Реферат: Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.11

Название: Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.11
Раздел: Рефераты по астрономии
Тип: реферат

Задача 11 . Найти производную.

11.1.

lny= 1/2*ln2 arctgx

y'= (arctgx)1/2*ln(arctgx) (lnarctgx)/(arctgx*(1+x2 ))

11.2.

lny= ln2 sin√x

y'= ((sin√x)lnsin√x *ctg√x*lnsin√x)/√x

11.3.

lny= 5ex lnsinx

y'= (sinx)5e^x (5ex lnsinx+5ex ctgx)

11.4.

lny= ex lnarcsinx

y'= (arcsinx)e^x (ex lnarcsinx+ex /√(1-x2 ))

11.5.

lny= 3x lnlnx

y'= (lnx)3^x (3x ln3lnlnx+3x /(xlnx))

11.6.

lny= arcsinxlnx

y'= xarcsinx (lnx/√(1-x2 )+arcsinx/x)

11.7.

lny= 2ex lnctg3x

y'= 2(ctg3x)2e^x (ex lnctg3x-3ex /(ctg3x*sin2 3x))

11.8.

lny= etgx lnx

y'= xe^tgx ((etgx lnx)/cos2 x+etgx /x)

11.9.

lny= 4exlntgx

y'= (tgx)4e^x (4ex lntgx+ 4ex ) = (tgx)4e^x (4ex lntgx+ 4ex ) =

tgxcos2 x sinxcosx

11.10.

lny=exlncos5x

y'= (cos5x)e^x (ex lnco5x-5ex sin5x )= ex (cos5x)e^x (lncos5x-5tg5x)

cos5x

11.11.

lny= 8ln2 (xsinx)

y'= 16(xsinx)8ln(xsinx) ln(xsinx)(sinx+xcosx)

11.12.

lny= chxln(x-5)

y'= (x-5)chx (shxln(x-5)+chx/(x-5))

11.13.

lny= tgxln(x3+4)

y'= (x3 +4)tgx (ln(x3 +4)/cos2 x+(3x2 tgx)/(x3 +4))

11.14.

lny= sinx3 lnx

y'= xsinx^3 (3x2 cosx3 lnx+(sinx3 )/x)

11.15.

lny= shxln(x2 -1)

y'= (x2 -1)shx (chxln(x2 -1)+(2xshx)/(x2 -1))

11.16.

lny= ctgxln(x4+5)

y'= (x4 +5)ctgx (-(ln(x4 +5))/sin2 x+(4x3 ctgx)/(x4 +5))

11.17.

lny= 5x/2*lnsinx

y'= (sinx)5x/2 (2,5lnsinx+(5xcosx)/sinx)= (sinx)5x/2 (2,5lnsinx+5xctgx)

11.18.

lny= cosxln(x2+1)

y'= (x2 +1)cosx (-sinxln(x2 +1)+(2xcosx)/(x2 +1))

11.19.

lny= x19 ln19+19lnx

y'= 19x^19 x19 (19x18 ln19+19/x)

11.20.

lny= 3x lnx+xln2

y'= x3^x 2x (3x ln3lnx+3x /x+ln2)

11.21.

lny= e1/x lnsin√x

y'= (sin√x)e^1/x (-(e1/x lnsin√x)/x2 +(e1/x cos√x)/(2√xsin√x))=

= e1/x (sin√x)e^1/x ((ctg√x)/(2√x)-(lnsin√x)/x2 )

11.22.

lny= ectgx lnx

y'= xe^ctgx (-(ectgx lnx)/sin2 x+ectgx /x)= ectgx xe^ctgx (1/x-(lnx)/sin2 x)

11.23.

lny= ecosx lnx

y'= xe^cosx (-ecosx sinxlnx+ecosx /x)= ecosx xe^cosx (1/x-sinxlnx)

11.24.

11.25.

lny= esinx lnx

y'= xe^sinx (esinx cosxlnx+esinx /x)= ecosx xe^cosx (cosxlnx+1/x)

11.26.

lny= ln2 (tgx)/4

y'= (tgx)ln(tgx)/4 /*(ln(tgx))/(2cos2 x)

11.27.

lny= earctgx lnx

y'= xe^arctgx ((earctgx lnx)/(1+x2 )+ earctgx /x)

11.28.

lny= thxln(x8 +1)

y'= (x8 +1)thx ((ln(x8 +1))/ch2 x+(8x7 thx)/(x8 +1))

11.29.

lny= 29x lnx+xln29

y'= x29^x 29x (29x ln29lnx+29x /x+ln29)

11.30.

lny= ln2 (cos2x)/4

y'= (cos2x)ln(cos2x)/4 (-ln(cos2x)sin2x)/cos2x

11.31.

lny= ex lnx+9lnx

y'= xe^x x9 (ex lnx+ex /x+9/x)