Реферат: Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.12
Название: Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.12 Раздел: Рефераты по астрономии Тип: реферат |
Задача 12 . Найти производную. 12.1. y'= 2x√(x2 -4) + x(x2 +8) + x/8*arcsin(2/x) – 2x2 = 24 24√(x2 -4) 16x2 √(1-4/x2 ) = x3 -x + x/8*arcsin(2/x) 8√(x2 -4) 12.2. y'= 4(16x2 +8x+3)-(4x+1)(32x+8) + 4 = (16x2 +8x+3)2 2(1+(4x+1)2 /2) = 16 _ (16x2 +8x+3)2 12.3. y'= 2 + 2e4x + 2e-2x arcsine2x – 2e2x e-2x = √(1-e4x )(1+√(1-e4x )) √(1-e4x ) = 2e-2x arcsine2x 12.4. y'= (9x-6)arctg(3x-2) + 3√(9x2 -12x+5) _ 3+(9x-6)/√(9x2 -12x+5) = √(9x2 -12x+5) 1+(3x-2)2 3x-2+√(9x2 -12x+5) = (9x-6)arctg(3x-2) √(9x2 -12x+5) 12.5. y'= -2√(2 x-x2 ) + 2-2x + (x-1)((1-x)/√(2x-x2 )-1-√(2x-x2 )) = (x-1)2 (x-1)√(2x-x2 ) (x-1)2 (1+√(2x-x2 )) = -1 _ 2 _ 1_ (1+√(2x-x2 ))√(2x-x2 ) √(2x-x2 )(x-1)2 (x-1) 12.6. y'= 2xarcsin(3/x) _ 3x2 + 2x√(x2 -9) _ x(x2 +18) = 81 81x2 √(x2 -9) 81x2 √(x2 -9) 81x2 √(x2 -9) = 2xarcsin(3/x) + x3 -39x _ 81 81x2 √(x2-9) 12.7. y'= 6 + 3(3x2 -2x+1)-(6x-2)(3x-1) = 4 _ 2(2+(3x-1)2 ) 3(3x2 -2x+1)2 3(3x2 -2x+1)2 12.8. y'= 3 + 3e6x + 3e-3x arcsin(e3x ) – 3e-3x e3x = √(1-e6x )(1+√(1-e6x )) √(1-e6x ) = 3e-3x arcsin(e3x ) 12.9. y'= 16x-4+4√(16x2 -8x+2) _ (16x-4)arctg(4x-1) _ 4√(16x2 -8x+2) = (4x-1+√(16x2 -8x+2)√(16x2 -8x+2) √(16x2 -8x+2) 2+16x2 -8x = (4-16x)arctg(4x-1) √(16x2 -8x+2) 12.10. y'= (2x+1)((-1-2x)/√(-x-x2 )-2-4√(-x-x2 )) + (-2-4x)(2x+1)/√(-x-x2 )-8√(-x-x2 ) = (2x+1)2 (1+2√(-x-x2 )) (2x+1)2 = 4x+4x2 _ 3 _ (2x+1)√(-x-x2 )(1+2√(-x-x2 )) (2x+1)√(-x-x2 ) 12.11. y'= 4(2x+3)3 arcsin(1/(2x+3)) – 2(2x+3)4 + 2/3*(8x+12)√(x2 +3x+2) + √(4x2 +12x+8) + 2(4x2 +12x+11)(2x+3) = 4(2x+3)3 arcsin(1/(2x+3)) – 8/3*(2x+3)√(x2 +3x+2) 3√(x2 +3x+2) 12.12. y'= x2 +4x+6-(2x+4)(x+2) + 2 = 4 _ (x2 +4x+6)2 2(2+(x+2)2 ) (x2 +4x+6)2 12.13. y'= 5 + 5e10x + 5e-5x arcsin(e5x ) – 5e-5x e5x = √(1-e10x )(1+√(1-e10x )) √(1-e10x ) = 5e-5x arcsin(e5x ) 12.14. y'= (x-4)arctg(x-4) + √(x2 -8x+17) _ √(x2 -8x+17)+x-4 = √(x2 -8x+17) x2 -8x+17 (√(x2 -8x+17)+x-4)√(x2 -8x+17) = (x-4)arctg(x-4) √(x2 -8x+17) 12.15. y'= (2-x)((2-x)2 /√(-3+4x-x2 )+1+√(-3+4x-x2 )) + 2(4-2x)(2-x)/√(-3+4x-x2 )+2√(-3+4x-x2 ) = (2-x)2 (1+√(-3+4x-x2 )) (2-x)2 = x2 -5x+7 _ (2-x)√(-3+4x-x2 ) 12.16. y'= (6x-4)√(9x2 -12x+3) + (3x2 -4x+2)(9x+6) + 12(3x-2)3 arcsin(1/(3x-2)) – √(9x2 -12x+3) - 9(3x-2)4 = 12(3x-2)3 arcsin(1/(3x-2)) - 6(3x-2)3 _ √(1-1/(3x-2)2 )(3x-2)2 √(9x2 -12x+3) 12.17. y'= 2 + x2 -2x+3-(x-1)(2x-2) = 4 _ 2(3+x2 -2x) (x2 -2x+3)2 (x2 -2x+3)2 12.18. y'= 5e5x (1+√(e10x -1)) _ 5e-5x = √(e10x -1)(1+√(e10x -1)) √(1-e-10x ) = 5√(e5x -1) √(e5x +1) 12.19. y'= 2+(4x-6)/√(4x2 -12x+10) _ (4x-6)arctg(2x-3) _ 2√(4x2 -12x+10) = 2x-3+√(4x2 -12x+10) √(4x2 -12x+10) √(4x2 -12x+10) = (6-4x)arctg(2x-3) √(4x2 -12x+10) 12.20. y'= (-2-x)((-2-x)2 /√(-3-4x-x2 )+1+√(-3-4x-x2 )) + 2√(-3-4x-x2 ) + 4+2x = (-2-x)2 (1+√(-3-4x-x2 )) (2+x)2 (2+x)√(-3-4x-x2 ) = -x _ (2+x)2 √(-3-4x-x2 ) 12.21. y'= 2/3*(8x-4)√(x2 -x) + (4x2 -4x+3)(2x-1) + 8(2x-1)3 arcsin(1/(2x-1)) – 2(2x-1)5 = 3√(x2 -x) (2x-1)2 √(4x2 -4x) = 8(2x-1)3 arcsin(1/(2x-1)) 12.22. y'= 2(4x2 -4x+3)-4(2x-1)2 + 4 = 8 _ (4x2 -4x+3)2 2(4x2 -4x+3) (4x2 -4x+3)2 12.23. y'= -4e-4x + 4e4x +4e8x /√(e8x -1) = 4√(e4x -1) √(1-e-8x ) e4x +√(e8x -1) √(e4x +1) 12.24. y'= 5+25x/√(25x2 +1) _ 25xarctg5x _ 5√(25x2 +1) = _ 25xarctg5x 5x+√(25x2 +1) √(25x2 +1) 25x2 +1 √(25x2 +1) 12.25. y'= -6√(-3+12x-9x2 ) + 12-18x + (3x-2)((6-9x)(3x-2)/√(-3+12x-9x2 )-3-3√(-3+12x-9x2 )) = (3x-2)2 (3x-2)√(-3+12x-9x2 ) (1+√(-3+12x-9x2 ))(3x-2)2 = -9x-2 _ (3x-2)2 √(-3+12x-9x2 ) 12.26. y'= 12(3x+1)3 arcsin(1/(3x+1)) – 3(3x+1)5 + (6x+2)√(9x2 +6x) + √(9x2 +6x)(3x+1)2 + (3x2 +2x+1)(9x+3) = 12(3x+1)3 arcsin(1/(3x+1)) + 18x2 (3x+1)/√(x2 +3x+2) √(9x2 +6x) 12.27. y'= 2 + 8x2 +8x+6-16x2 -16x-4 = 5-4x2 -4x _ 2(3+4x2 +4x) (4x2 +4x+3)2 (4x2 +4x+3)2 12.28. y'= 3e3x (e3x +√(e6x -1)) _ 3e-3x = √(e6x -1)(e3x +√(e6x -1)) √(1-e-6x ) = 3√(e3x -1) √(e3x +1) 12.29. y'= 49xarctg7x + 7√(49x2 +1) _ 7+49x/√(49x2 +1) = 49xarctg7x √(49x2 +1) 49x2 +1 7x+√(49x2 +1) √(49x2 +1) 12.30. y'= -√(1-4x2 ) _ 4x + 2x(4x2 /√(1+4x2 )-1-√(1+4x2 )) = -1 _ 1 _ x2 x√(1-4x2 ) 2x2 (1+√(1+4x2 )) x2 √(1-4x2 ) x√(1+4x2 ) 12.31. y'= -2e-2x + 2e2x +2e4x /√(e4x -1) = 2√(e2x -1) √(1-e-4x ) e2x +√(e4x -1) √(e2x +1) |