Книга: Введение в математический анализ

Название: Введение в математический анализ
Раздел: Рефераты по математике
Тип: книга

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственный технический университет

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Учебное пособие по математике

для студентов всех специальностей

заочной формы обучения

2007


ФУНКЦИЯ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ

Основные определения и понятия

Одним из основных понятий математики является число. Числа целые и дробные, как положительные, так и отрицательные, вместе с числом ноль называются рациональными числами. Рациональные числа могут быть представлены в виде конечных или бесконечных периодических дробей. Числа, которые представляются в виде бесконечных, но непериодических дробей, называются иррациональными .

Совокупность всех рациональных и иррациональных чисел называется множеством действительных , или вещественных чисел. Действительные числа можно изображать точками числовой оси. Числовой осью называется бесконечная прямая, на которой выбраны:

1) некоторая точка О, называемая началом отсчёта;

2) положительное направление, указываемое стрелкой;

3) масштаб для измерения длин.

Между всеми действительными числами и всеми точками числовой оси существует взаимно–однозначное соответствие , т.е. каждому действительному числу соответствует точка числовой оси и наоборот.

Абсолютной величиной (или модулем ) действительного числа x называется неотрицательное действительное число ׀x ׀, определяемое следующим образом: ׀x ׀ = x , если x ≥ 0, и ׀x ׀ = –x , если x < 0.

Переменной величиной называется величина, которая принимает различные численные значения. Величина, численные значения которой не меняются, называется постоянной величиной.

Переменная величина называется упорядоченной , если известна область её изменения и про каждое из двух любых её значений можно сказать, какое из них предыдущее и какое последующее. Частным случаем такой величины является числовая последовательность

Переменная величина называется возрастающей (убывающей ), если каждое её последующее значение больше (меньше) предыдущего. Возрастающие и убывающие переменные величины называются монотонными . Переменная величина называется ограниченной , если существует такое постоянное число M > 0, что все последующие значения переменной, начиная с некоторого, удовлетворяют условию:

– M ≤ x ≤ M, т.е. ׀x ׀ ≤ M.

Переменная величина y называется (однозначной) функцией переменной величины x, если каждому значению переменной величины x, принадлежащему множеству действительных чисел X, соответствует одно определённое действительное значение переменной величины y .

Переменная x называется в этом случае аргументом , или независимой переменной , а множество X – областью определения функции.

Запись y = f ( x ) означает, что y является функцией x . Значение функции f ( x ) при x = a обозначают через f ( a ).

Область определения функции в простейших случаях представляет собой: интервал (открытый промежуток ) (a , b ), т.е. совокупность значений x , удовлетворяющих условию a < x < b ; сегмент (отрезок или замкнутый промежуток ) , т.е. совокупность значений x , удовлетворяющих условию a x b ; полуинтервал (т.е. a < x b ) или (т.е. a x < b ); бесконечный интервал (a , + ∞) (т.е. a < x < + ∞) или (– ∞, b ) (т.е. – ∞ < x < b ) или (– ∞, + ∞) (т.е. – ∞ < x < + ∞); совокупность нескольких интервалов или сегментов и т. п.

Графиком функции y = f ( x ) называется геометрическое место точек плоскости xOy, координаты которых удовлетворяют уравнению y = f ( x ).

Функция f ( x ) называется чётной, если для любого значения x . График чётной функции расположен симметрично относительно оси ординат. Функция f(x) называется нечётной , если для любого значения x . График нечётной функции расположен симметрично относительно начала координат.

Функция f ( x ) называется периодической , если существует такое положительное число T, называемое периодом функции, что для любого значения x выполняется равенство .

Наименьшим же периодом функции называется наименьшее положительное число τ, для которого f ( x + τ) = f ( x ) при любом x . Следует иметь в виду, что f ( x + k τ) = f ( x ) , где k – любое целое число.

Функции задаются:

1) аналитически (в виде формулы), например, ;

2) графически (в виде графика);

3) таблично (в виде таблицы), например таблица логарифмов.

Основными элементарными функциями являются следующие, аналитически заданные функции:

1. Степенная функция : , где α – действительное число.

2. Показательная функция : , где a > 0, a ≠ 1.

3. Логарифмическая функция : , где a > 0, a ≠ 1.

4. Тригонометрические функции : y = sinx , y = cosx , y = tgx , y = ctgx ,

y = sec x, y = cosec x.

5. Обратные тригонометрические функции :

y = arcsin x, y = arccos x, y = arctg x, y = arcctg x, y = arcsec x ,

y = arccosecx .

Если y является функцией от u , а u есть функция от x , то y также зависит от x . Пусть y = F(u ), u = φ(x ). Тогда y = F(φ(x )). Последняя функция называется функцией от функции , или сложной функцией. Например, y = sinu , u = . Функция y = sin () есть сложная функция от x .

Элементарной функцией называется функция, которая может быть задана одной формулой вида y = f ( x ) , где выражение f ( x ) составлено из основных элементарных функций и постоянных при помощи конечного числа операций сложения, вычитания, умножения, деления и взятия функции от функции.

Например, y = ׀x ׀ = ; ; .

Пример 1 . Найти , если .

Решение . Найдём значения данной функции при x = a и x = b :

,.

Тогда получим

Пример 2 . Определить, какая из данных функций чётная или нечётная:

а) б) ; в) ;

г) .

Решение . а) Так как , то

т.е. f (– x ) = – f ( x ). Следовательно, функция нечётная.

б) Имеем , т.е.

f(– x) = f(x). Следовательно, функция чётная.

в) Здесь ,т.е.

f (– x ) = f ( x ). Следовательно, функция чётная.

г) Здесь . Таким образом, функция не является ни чётной, ни нечётной.

Пример 3 . Найти область определения функции .

Решение . Функция определена, если 2x – 1 ≠ 0, т.е. если . Таким образом, областью определения функции является совокупность двух интервалов:

Пример 4 . Найти область определения функции .

Решение . Функция определена, если x – 1 ≠ 0 и 1+ x > 0, т.е. если x ≠ 1 и x > – 1. Область определения функции есть совокупность двух интервалов: ( – 1, 1) и (1, + ∞).

Пример 5. Найти область определения функции

Решение. Первое слагаемое принимает вещественные значения при 1 –2x ≥ 0, а второе при . Таким образом, для нахождения области определения заданной функции необходимо решить систему неравенств: Получаем

Следовательно, областью определения будет сегмент

.

ПОСТРОЕНИЕ ГРАФИКОВ ФУНКЦИЙ

При построении графиков функций применяются следующие приёмы:

а) построение «по точкам»;

б) действия с графиками (сложение, вычитание, умножение графиков);

в) преобразования графиков (сдвиг, растяжение).

Исходя из графика функции y = f ( x ) , можно построить графики функций:

1) y = f (x a ) – первоначальный график, сдвинутый вдоль оси Оx на величину a ;

2) y = f (x ) + b – тот же график, сдвинутый вдоль оси Oy на величину b ;

3) y = A · f (x ) – исходный график, растянутый в A раз вдоль оси Oy;

4) y = f (kx ) – тот же график, сжатый в k раз вдоль оси Ox.

Таким образом, можно по графику функции y = f (x ) построить график функции вида .

Рис. 1

Пример 6 . Построить график функции y = 2x + 1 + cosx .

Решение . График данной функции можно построить путём сложения графиков двух функций: y = 2x + 1, y = cosx . График первой функции есть прямая, её можно построить по двум точкам, график второй функции–косинусоида(Рис. 1).

Пример 7 . Построить график функции

Решение . При x < 3 графиком является луч прямой, а при x ≥ 3 – ветвь параболы. Искомый график изображен на рис. 2.

Рис. 2

Пример 8 . Построить график функции y = 2 sin (2x – 1) или

Решение . Здесь Исходный график y = sinx. Затем строим график функции y = sin 2x путём сжатия вдоль оси абсцисс в два раза. После этого строим график функции путём сдвига вправо и, наконец, искомый график функции y = 2 sin (2x – 1) путём растяжения вдоль оси ординат графика (3) в два раза (рис. 3).

Рис.3

ПРЕДЕЛЫ

Число а называется пределом последовательности если для всякого сколь угодно малого положительного числа ε найдётся такое положительное число N, что при n > N.

Число A называется пределом функции f(x) при x → a , если для любого сколь угодно малого ε > 0 найдётся такое δ > 0, что ׀f ( x ) – A׀ < ε при
.

где M – произвольное положительное число .

В этом случае функция f ( x ) называется бесконечно большой величиной при xa .

величиной при xa .

Если x < a и xa , то условно пишут xa – 0; если x > a и xa , то пишут xa + 0.

делом функции f (x ) в точке a .

Практическое вычисление пределов основывается на следующих теоремах.

4)

5) при ()

Используются также первый и второй замечательные пределы:

1)

2)

Логарифм числа x по основанию e называется натуральным логарифмом и обозначается lnx .

При решении примеров полезно иметь в виду следующие равенства:

Пример 9 . Показать, что при n →∞ последовательность имеет пределом число 2.

Решение . Здесь n –й член последовательности . Следовательно, . Зададим заранее положительное число ε. Выберем n настолько большим, что будет выполняться неравенство 1/n < ε. Для этого достаточно принять n > 1/ε. При таком выборе n будем иметь . Следовательно, .

Пример 10 . Показать, что при n → ∞ последовательность 7/3, 10/5,

13/7, . . . , (3n + 4) /(2n + 1), . . . имеет пределом число 3/2.

Решение . Здесь 3/2 = (3n + 4) /(2n + 1) – 3/2 = 5/ . Определим, при каком значении n выполняется неравенство

5/ ; так как 2(2n + 1) > 5/ε, то n > 5/4ε – 1/2.

Положив ε = 0,1, заключаем, что неравенство выполняется при n > 12 (например, при n = 13).

Неравенство выполняется при n > 124,5 (например, при n = 125).

Неравенство выполняется при n > 1249,5 (например, при n = 1250).

Пример 11 .

Решение . Так как x → 4, то числитель дроби стремится к числу

5 · 4 + 2 = 22, а знаменатель к числу 2 · 4 + 3 = 11.

Пример 12 .

Решение. Числитель и знаменатель дроби безгранично возрастают при

x → ∞. В таком случае говорят, что здесь имеет место неопределённость вида .

Разделив на x числитель и знаменатель дроби, получаем

Пример 13 .

Решение . Здесь числитель и знаменатель дроби стремятся к нулю при

x → 3 (принято говорить, что получается неопределённость вида .

Пример 14 .

Решение . Разложим на множители числитель и знаменатель дроби:

Пример 15 .

Решение . Имеем

Числитель дроби стремится к 300, а знаменатель стремится к нулю, т.е. является бесконечно малой величиной, следовательно, рассматриваемая дробь –бесконечно большая величина и

Пример 16 .

Решение . Умножим числитель и знаменатель дроби на сумму

:

Пример 17 .

Решение . Положим , тогда

Пример 18 .

Решение . Имеем

Пример 19 .

Решение . Имеем

Здесь мы воспользовались результатом предыдущего примера, приняв

Пример 20 .

Решение . Разделим числитель и знаменатель дроби на старшую степень x , т.е. на :

Пример 21 .

Решение . Разделим числитель и знаменатель на :

Пример 22 .

Решение . Умножим и разделим рассматриваемое выражение на

:

Пример 23.

Решение . Делением числителя дроби на знаменатель выделим целую часть:

Таким образом,

так как

то

Приняв во внимание, что

Пример 24 . Найти левый и правый пределы функции

при x → 3.

Решение .

Пример 25 . Найти левый и правый пределы функции при

xa .

Решение .

НЕПРЕРЫВНОСТЬ ФУНКЦИИ

Функция f(x) называется непрерывной в точке а , если: 1) эта функция определена в некоторой окрестности точки а ; 2) существует ; 3) этот предел равен значению функции в точке а , т.е.

Обозначая (приращение аргумента) и (приращение функции), можно условие непрерывности записать так:

тогда, когда в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Если функция непрерывна в каждой точке некоторой области (интервала, сегмента и т.п.), то она называется непрерывной в этой области .

Точка а , принадлежащая области определения функции или являющаяся граничной для этой области, называется точкой разрыва , если в этой точке нарушается условие непрерывности функции.

Если существуют конечные пределы:

причём не все три числа равны между собой, то а называется точкой разрыва I рода .

В частности, если левый и правый пределы функции в точке а равны между собой: , но не равны , то а называется устранимой точкой разрыва .

Точки разрыва, не являющиеся точками разрыва I рода, называются точками разрыва II рода . В точках разрыва II рода не существует хотя бы один из односторонних пределов.

Сумма и произведение конечного числа непрерывных функций есть функция непрерывная.

Частное от деления двух непрерывных функций есть функция непрерывная во всех точках, где делитель не равен нулю.

Пример 26 .

Решение . Находим

Таким образом, функция при не имеет ни левого, ни правого конечного предела. Следовательно, является точкой разрыва II рода (рис. 4).

Пример 27 .

Решение .

Итак, при функция имеет левый и правый конечные пределы, причём эти пределы различны. Следовательно, является точкой разрыва I рода.

Рис. 4 Рис. 5

Разность между правым и левым пределом в точке разрыва I рода

(рис. 5).

Пример 28 .

Решение . В точке функция не определена, так как, выполнив

может быть сокращена на , так как . Следовательно, при

Легко видеть, что

Таким образом, при функция имеет устранимый разрыв. Он будет устранён, если условиться, что при

при всех значениях x , не исключая и . В этом случае графиком функции будет прямая линия .

Пример 29 . Доказать, что функция непрерывна в точке .

Решение . Находим

.

Значит, функция непрерывна в точке .

Пример 30 . Исследовать на непрерывность функцию

и изобразить график функции в окрестностях точки разрыва.

Решение . Знаменатель при обращается в ноль, и значит, при не существует. Следовательно, точка разрыва функции.

Для определения типа разрыва надо найти пределы функции слева и справа при .

Таким образом, пределы функции слева и справа при равны между собой, но в точке функция не определена, значит, имеем устранимый разрыв. График функции в окрестности точки разрыва изображён на рис. 6

Рис. 6

Доопределив функцию в точке , положив , получим непрерывную функцию