Реферат: Теория устойчивости
Название: Теория устойчивости Раздел: Рефераты по математике Тип: реферат | ||||||||||||||||||||||||||
Введение Одной из основных задач теории автоматического регулирования является изучение динамических процессов, происходящих в автоматических системах. Автоматические системы при нормальной эксплуатации должны поддерживать определенный режим работы объекта регулирования при действии на него многих возмущающих факторов. Такое поведение может быть достигнуто лишь в системах автоматического регулирования, обладающих устойчивостью по отношению к этим воздействиям. Устойчивость системы означает, что малое изменение входного сигнала или какого-нибудь возмущения, начальных условий или параметров не приведут к значительным отконениям выходного сигнала. Это определение раскрывает физический смысл понятия устойчивости. Теория устойчивости, основоположниками которой являются великий русский ученый А.М. Ляпунов и великий французский ученый А.Пуанкаре, представляет собой важный раздел прикладной математики. Создателями современной теории устойчивости являются русские ученые Н.Г. Четаев, Е.А. Барбашин, Н.П. Еругин, Н.Н. Красовский. 1. Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову. Рассмотрим задачу Коши для нормальной системы дифференциальных уравнений
(1) с начальными условиями x ( t0 ) = x0 (2) где x = ( x1 , x2 , ... , xn ) - n - мерный вектор; t Î I = [t0 , + ¥ [ - независимая переменная, по которой производится дифференцирование; f ( t, x ) = ( f1 ( t , x ) , f2 ( t , x ) , ... , fn ( t , x ) ) - n - мерная вектор - функция. Комментарии к задаче Коши (1), (2). Для простоты восприятия эту задачу можно сначала трактовать как задачу Коши для скалярного дифференциального уравнения первого порядка вида x’= f ( t , x ) с начальным условием x ( t0 ) = x0 . С целью упрощения все рисунки п. 10 ,если нет специальных оговорок, приводится для случая n = 1.
Так как задача теории устойчивости впервые возникла в механике, то переменную t принято интерпретировать как время, а искомую вектор-функцию x ( t ) - как движение точки в зависимости от времени в пространстве Rn+1 (рис.1) Пусть задача Коши (1), (2) удовлетворяет условиям теоремы существования и единственности. Тогда через каждую точку ( t0 , x0 ) области единственности решений проходит только одна интегральная кривая. Если начальные данные ( t0 , x0 ) изменяются, то изменяется и решение. Тот факт, что решение зависит от начальных данных, обозначается следующим образом: x ( t ) = x ( t ; t0 , x0 ). Изменение этого решения в данной математической модели с изменением начальных данных ( t0 , x0 ) приводят к существенному изменению решения x ( t ; t0 , x0 ) , приводит к тому, что такой моделью нельзя пользоваться, поскольку начальные данные ( t0 , x0 ) получаются из опыта, а изменения не могут быть абсолютно точными. Естественно, что в качестве математической модели пригодна лишь та задача Коши, которая устойчива к малым изменениям начальных данных. Определим понятие устойчивости, асимптотической устойчивости и неустойчивости в смысле Ляпунова. Для этого отклоение решения x ( t ) = x ( t ; t0 , x0 ) , вызванное отклонением в x0 начального значения x0 , будем записывать следующим образом: | x ( t ; t0 , x0 + в x0 ) - x ( t ) | = | x ( t ; t0 , x0 + в x0 ) - x ( t ; t0 , x0 ) |. Определение 1. Решение x ( t ) = x ( t ; t0 , x0 ) системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если оно непрерывно по x0 на интервале I = = [ t0 , + ¥ [ , т.е. "e > 0 $d > 0 такое, что "D x0 | в x0 | £dÞ | x ( t ; t0 , x0 + в x0 ) - x ( t ) | £e" t ³ t0 . Если, кроме того, отклонение решения x ( t ) стремится к нулю при t ® + ¥ для достаточно малых в x0 , т.е. $D > 0 "D x0 . | в x0 | £DÞ | x ( t ; t0 , x0 + в x0 ) - x ( t ) | ® 0 , t ® + ¥ . (3) то решение x ( t ) системы (1) называется асимптотически устойчивым в положительном направлении (или асимптотически устойчивым). Аналогично определяются различные типы устойчивости решения в отрицательном направлении. Комментарий к определению 1. 1) Геометрически устойчивость по Ляпунову решение х ( t ) можно интерпритировать следующим образом ( рис.1 ) : все решения x ( t ; t0 , x0 + в x0 ) , близкие в начальный момент t0 к решению x ( t ) (т.е. начинающиеся в пределах в - трубки ) , не выходят за пределы e - трубки при всех значениях t ³ t0 .
2) Асимптотическая устойчивость есть устойчивость с дополнительным условием (3) : любое решение x1 ( t ) , начинающееся в момент t0 в в - трубке, с течением времени неограниченно приближается к решению x ( t ) (рис.2). Трубка радиуса в называется областью притяжения решения x ( t ). Решение x2 ( t ), начинающееся при t = t0 за пределами области притяжения, но в пределах в - трубки, не покидает e - трубку, хотя может и не приближаться к решению x(t). Определение 2. Решение x ( t ) = x ( t ; t0 , x0 ) системы (1) называется неустойчивып по Ляпунову в положительном направлении (или неустойчивым), если оно не является устойчивым в положительном направлении. Аналогично определяется неустойчивость в отрицательном направлении. Комментарий к определению 2. Геометрически неустойчивость по Ляпунову означает, что среди решений, близких в начальный момент t0 к решению х ( t ) , найдется хотя бы одно, которое в некоторый момент t1 ( свой для каждого такого решения) выйдет за пределы e - трубки (рис.3). Приведем примеры из механики, иллюстрирующие определения различных типов устойчивости для одномерного случая, т.е. n = 1. Рассмотрим маятник, состоящий из точечной массы m, укрепленной на невесомом стержне длиной l (рис.4). Выведем маятник из состояния I, отклонив стержень на угол a ; тогда, как известно из опыта, он будет стремиться занять вновь положение I. Если пренебречь сопротивлением окружающей среды, то маятник будет колебаться возле положения I сколь угодно долго с амплитудой, равной начальному отклонению, - это модель устойчивого положения равновесия. Если же учитывать сопротивление окружающей среды, то амплитуда колебаний маятника будет уменьшаться и в итоге он снова займет положение I - это модель асимптотически устойчивого положения равновесия. Если маятник находится в положении II, то малейшее его смещение приведет к удалению маятника от состояния II - это модель не устойчивого положения равновесия. x 0 t Рис.3 Рис.4 Исследование устойчивости произвольного решения x ( t ) системы (1) всегда можно свести к исследованию устойчивости нулевого решения некоторой преобразованной системы. Действительно, в системе (1) произведем подстановку y ( t ) = x - x (t). Тогда получим систему y’ = F ( t, y ). (4) где F ( t , y ) = f ( t , y ( t ) + x ( t ) ) - f ( t , x ( t ) ) , F (t, 0) º 0 " t ³ t0 . Решению x ( t ) системы (1) соответствует нулевое решение y (t) º 0 системы (4). В дальнейшем будем предполагать, что система (1) имеет нулевое решение, т.е. f ( t , 0 ) = 0 " t ³ t0 , и ограгничимся исследованием устойчивости нулевого решения. Переформулируем определения различных типов устойчивости для нулевого решения x ( t ) º 0 системы (1). Определение 3. Нулевое решение x ( t ) º 0 системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если "e > 0 $d = в ( e ) > 0 такое, что " x0 | в x0 | £dÞ | x ( t ; t0 , x0 ) | £e" t ³ t0 . Если кроме того, $D > 0 " x0 | в x0 | £DÞ | x ( t ; t0 , x0 ) | ® 0 , t ® + ¥ , то решение x ( t ) º 0 системы (1) называется асимптотически устойчивым в положительном направлении ( или асимптотически устойчивым ) . Определение 4. Нулевое решение x ( t ) º 0 системы (1) называется неустойчивым по Ляпунову в положительном направлении (или неустойчиво), если оно не является устойчивым в положительном направлении, т.е. $e > 0 $ t1 > t0 "d > 0 x0 ¹ 0 | x0 | £dÞ | x ( t ; t0 , x0 ) | > e . Геометрическая интерпритация устойчивости, асимптотической устойчивости и неустойчивости нулевого решения x ( t ) º 0 системы (1) дана соответственно на рис.5-7.
2. Устойчивость решения автономной системы. Устойчивость решения системы линейных дифференциальных уравнений с постоянными коэффициентами. Система обыкновенных дифференциальных уравнений называется автономной (или стационарной, или консервативной, или динамической), если независимая переменная не входит явно в систему уравнений. Нормальную автономную систему n - го порядка можно записать в векторной форме : dx / dt = f ( x ). (5) Рассмотрим задачу Коши для системы (5) с начальными условиями (2). В дальнейшем предполагаем, что задача Коши (5), (2) удовлетворяет условиям теоремы существования и единственности. Пусть x = x ( t ) - есть решение системы (5). Направленная кривая g , которую можно параметрически задать в виде xi = xi ( t ) ( i = 1, ... , n ), называется траекторией (фазовым графиком) системы (5) или траекторией решения x = x ( t ). Пространство Rn с координатами ( x1 , ... , xn ), в котором расположены траектории системы (5), называется фазовым пространством автономной системы (5). Известно, что интегральные кривые системы (5) можно параметрически задать в виде t = t , x1 = x1 ( t ), ... , xn = xn ( t ). Следовательно, интегральная кривая принадлежит пространству Rn+1 с координатами ( t , x1 , x2 , ... , xn ) , а траектория является проекцией интегральной кривой на пространство Rn параллельно оси t. Проиллюстрируем это для случая n = 2 , т.е. когда Rn+1 - трехмерное пространство, а фазовое пространство Rn - двумерная плоскость. На рис.8,а изображена интегральная кривая, заданная параметрическими уравнениями t = t, x1 = x1 ( t ) , x2 = x2 ( t ), на рис.8,б - ее проекция на плоскость, т.е. траектория, заданная параметрическими уравнениями x1 = x1 ( t ) , x2 = x2 ( t ). Стрелкой указано направление возрастания параметра t.
Определение 5. Точка ( a1 , a2 , ... , an ) называется точкой покоя (положением равновесия) автономной системы (5), если правые части f1 , f2 , ... , fn системы (5) обращаются в этой точке в нуль, т.е. f (a) = 0,где a = ( a1 , a2 , ... , an ) , 0 = ( 0 , 0 , ... , 0 ) . Если ( a1 , ... , an ) - точка покоя, то система (5) имеет постоянное решение x ( t ) = a. Как известно, исследование устойчивости любого, а значит, и постоянного решения a можно свести к исследованию устойчивости нулевого решения. Поэтому далее будем считать, что система (5) имеет нулевое решение x ( t ) º 0 , т.е. f ( 0 ) = 0, и точка покоя совпадает с началом координат фазового пространства Rn . В пространстве Rn+1 точке покоя соответствует нулевое решение. Это изображено на рис.8 для случая n = 2. Таким образом, устойчивость нулевого решения системы (5) означает устойчивость начала координат фазового пространства системы (5), и наоборот. Дадим геометрическую интерпретацию устойчивого, асимптотически устойчивого и неустойчивого начала плоскости, т.е. когда n = 2. Для этого следует спроектировать аналоги рис.5-7 в двумерном случае на фазовую плоскость R2 , причем проекциями e - трубки и в - трубки являются окружности с радиусами e и в . Начало x = 0 устойчиво, если все траектории, начинающиеся в пределах в - окружности, не покидают e - окружность " t ³ t0 (рис.9) ; асимптотически устойчиво, если оно устойчиво и все траектории, начинающиеся в области притяжения в , стремятся к началу (рис.10) ; неустойчиво, если для любой e - окружности и всех в > 0 существует хотя бы одна траектория, покидающая ее (рис.11). Нормальная система линейных дифференциальных уравнений с постоянными коэффициентами, имеющая вид dx / dt = A x, (6) где A - постоянная матрица размера n ´ n , является частным случаем системы (5). Следовательно, для этой системы справедливы все сделанные выше утверждения об автономных системах.
3. Простейшие типы точек покоя. Пусть имеем систему дифференциальных уравнений æ dx / dt = P ( x , y ), í(A) î dy / dt = Q ( x , y ). Точка ( x0 , y0 ) называется точкой покоя или особой точкой системы (A), если P ( x0 , y0 ) = 0 , Q ( x0 , y0 ) = 0. Рассмотрим систему æ dx / dt = a11 x + a12 y, í(7) î dy / dt = a21 x + a22 y. где aij ( i , j = 1 , 2 ) - постоянные. Точка ( 0 , 0 ) является точкой покоя системы (7). Исследуем расположение траектории системы (7) в окрестности этой точки. Ищем решение в виде x = a1 e k t , y = a2 e k t . (8) Для определения k получаем характеристическое уравнение a11 - k a12 = 0. (9) a21 a22 - k Рассмотрим возможные случаи. I. Корни характеристического уравнения действительны и различны. Подслучаи : 1) k1 < 0, k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел). 2) k1 > 0, k2 > 0. Точка покоя неустойчива (неустойчивый узел). 3) k1 > 0, k2 < 0. Точка покоя неустойчива (седло). 4) k1 = 0, k2 > 0. Точка покоя неустойчива. 5) k1 = 0, k2 < 0. Точка покоя устойчива, но не асимптотически. II. Корни характеристического уравнения комплексные : k1 = p + q i, k2 = p - q i. Подслучаи : 1) p < 0 , q ¹ 0. Точка покоя асимптотически устойчива (устойчивый фокус). 2) p > 0 , q ¹ 0. Точка покоя неустойчива (неустойчивый фокус). 3) p = 0, q ¹ 0. Точка покоя устойчива (центр). Асимптотической устойчивости нет. III. Корни кратные : k1 = k2 . Подслучаи : 1) k1 = k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел). 2) k1 = k2 > 0. Точка покоя неустойчива (неустойчивый узел). 3) k1 = k2 = 0. Точка покоя неустойчива. Возможен исключительный случай, когда все точки плоскости являются устойчивыми точками покоя. Для системы линейных однородных уравнений с постоянными коэффициентами dxi n = å ai j xj ( i = 1 , 2 , ... , n ) (10) dt i=1 характеристическим уравнением будет a11 - k a12 a13 ... a1n a21 a22 - k a23 ... a2n = 0. (11) . . . . . . . . an1 an2 an3 ... ann - k 1) Если действительные части всех корней характеристического уравнения (11) системы (10) отрицательны, то точка покоя xi ( t ) º 0 ( i = 1 , 2 , ... , n ) асимптотически устойчива. 2) Если действительная часть хотя бы одного корня характеристического уравнения (11) положительна, Re k i = p i > 0, то точка покоя xi ( t ) º 0 ( i = 1, 2, ... n ) системы (10) неустойчива. 3) Если характеристическое уравнение (11) имеет простые корни с нулевой действительной частью (т.е. нулевые или чисто мнимые корни ), то точка покоя xi ( t ) º 0 ( i = 1, 2, ... n ) системы (10) устойчива, но не асимптотически. Для системы двух линейных линейных уравнений с постоянными действительными коэфициентами . æ x = a11 x + a12 y, í . (12) î y = a21 x + a22 y характеристическое уравнение (9) приводится к виду k2 + a1 k + a2 = 0. 1) Если a1 > 0 , a2 > 0, то нулевое решение системы (12) асимптотически устойчиво. 2) Если а1 > 0 , a2 = 0, или a1 = 0 , a2 > 0 , то нулевое решение устойчиво, но не асимптотически. 3) Во всех остальных случаях нулевое решение неустойчиво; однако при a1 = a2 = 0 возможен исключительный случай, когда нулевое решение устойчиво, но не асимптотически. 4. Критерий устойчивости Михайлова. Частотные критерии устойчивости получили наиболее широкое практическое применение, так как, во-первых, они позволяют судить об устойчивости замкнутой системы по более простой передаточной функции системы W ( s ) ; во-вторых, анализ устойчивости можно выполнять и по экспериментально определенным частотным характеристикам; в-третьих, с помощью частотных характеристик можно судить и о качестве переходных процессов в системе. А.В. Михайлов первым предложил использовать развитые в радиотехнике Найквистом частотные методы для анализа устойчивости линейных систем регулирования. Сформулированным им в 1938 г. критерий устойчивости назвали его именем. Рассмотрим существо этого критерия. Пусть характеристическое уравнение замкнутой системы имеет вид в ( l ) = ln + a1 ln-1 + a2 ln-2 + ... + an = 0. (13) Зная его корни l1 , l2 , ... , ln , характеристический многочлен для уравнения (13) запишем в виде в ( l ) = ( l - l1 ) ( l - l2 ) ... ( l - ln ). (14)
Рис.12. Векторное изображение сомно-жителей характерис-тического уравнения замкнутой системы на плоскости : а - для двух корней l и li ; б - для четырех корней l1 , l ‘1 , l2 , l ‘2 Графически каждый комплексный корень l можно представить точкой на плоскости. Поэтому, в свою очередь, каждый из сомножителей уравнения (14) можно представить в виде разности двух векторов ( l - li ), как это показано на рис.12,а. Положим теперь, что l = j w ; тогда определяющей является точка w на мнимой оси (рис.12,б). При изменении w от - ¥ до + ¥ векторы j w - l1 и j w - l ‘1 комплексных корней l и l ‘1 повернуться против часовой стрелки, и приращение их аргумента равно + p , а векторы j w - l2 и j w - l ‘2 повернутся по часовой стрелке, и приращение их аргумента равно - p . Таким образом, приращение аргумента arg( j w - li ) для корня характеристического уравнения li , находящегося в левой полуплоскости, составит + p , а для корня, находящегося в правой полуплоскости, - p . Приращение результирующего аргумента в arg D( j w ) равно сумме приращений аргументов его отдельных сомножителей. Если сре1ди n корней характеристического уравнения m лежит в правой полуплоскости, то приращение аргумента составит D arg D( j w ) = ( n - m ) p - m p = ( n - 2m ) p . (15) - ¥ < w < ¥ для левой для правой полуплоскости полуплоскости Отметим теперь, что действительная часть многочлена D ( j w ) = ( j w )n + a1 ( j w )n-1 + a2 ( j w )n-2 + ... + an (16) содержит лишь четные степени w , а мнимая его часть - только нечетные, поэтому arg в ( j w ) = - arg в ( -j w ), (17) и можно рассматривать изменение частоты только на интервале w от 0 до ¥ . В этом случае приращение аргумента годографа характеристического многочлена D arg D( j w ) = ( n - 2m ) p / 2 . (18) 0 £ w < ¥ Если система устойчива, то параметр m = 0, и из условия (18) следует, что приращение аргумента D arg D( j w ) = n p / 2 . (19) 0 £ w < ¥ На основании полученного выражения сформулируем частотный критерий устойчивости Михайлова: для того чтобы замкнутая система автоматического регулирования была устойчива, необходимо и достаточно, чтобы годограф характеристического многочлена в замкнутой системе (годограф Михайлова) начинался на положительной части действительной оси и проходил последовательно в положительном направлении, не попадая в начало координат, n квадрантов комплексной плоскости ( здесь n - порядок характеристического уравнения системы).
Рис.13. Примеры годографов Михайлова для различных характеристических уравнений замкнутых систем: а - устойчивые системы при n = 1 - 6 ; б - неустойчивые системы при n = 4 и различных параметрах Соответствующие устойчивым системам годографы Михайлова для уравнений различных порядков построены на рис. 13,а. На рис. 13,б построены годографы Михайлова для неустойчивых систем при n = 4. |