Реферат: Сложение колебаний
Название: Сложение колебаний Раздел: Рефераты по науке и технике Тип: реферат |
Реферат На тему «Сложение колебаний»Студента I –го курса гр. 107 Шлыковича Сергея Минск 2001 Векторная диаграммаКолебаниями называются движения или процессы, обладающие той или иной повторяемостью во времени. Сложение нескольких гармонических колебаний одного направления и одинаковой частоты становится наглядным, если изображать колебания графически в виде векторов на плоскости. Полученная таким способом схема называется векторной диаграммой . Возьмем ось, вдоль которой будем откладывать колеблющуюся величину x . Из взятой на оси точки О отложим вектор длины A, образующий с осью угол б. Если привести этот вектор во вращение с угловой скоростью щ0 , то проекция конца вектора будет перемещаться по оси x в пределах от —А до +A , причем координата этой проекции будет изменяться со временем по закону Следовательно, проекция конца вектора на ось будет совершать гармонические колебания с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени. Таким образом, гармоническое колебание может быть задано с помощью вектора, длина которого равна амплитуде колебания, а направление образует с осью x угол, равный начальной фазе колебаний. Рассмотрим сложение двух гармонических колебаний одного направления и одинаковой частоты. Результирующее колебаниебудет суммой колебаний х1 и x2 , которые определяются функциями , (1) Представим оба колебания с помощью векторов A1 и А2 . Построим по правилам сложения векторов результирующий вектор А . На рисунке видно, что проекция этого вектора на ось x равна сумме проекций складываемых векторов: Поэтому, вектор A представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью щ0 , как и векторы А1 и А2 , так что сумма x1 и х2 является гармоническим колебанием с частотой (щ0 , амплитудой A и начальной фазой б. Используя теорему косинусов получаем, что (2) Также, из рисунка видно, что (3) Представление гармонических колебаний с помощью векторов позволяет заменить сложение функций сложением векторов, что значительно проще. Сложение колебаний во взаимно перпендикулярных направлениях. Представим две взаимно перпендикулярные векторные величины x и y , изменяющиеся со временем с одинаковой частотой щ по гармоническому закону, то (1) Где ex и eу — орты координатных осей x и y, А и B — амплитуды колебаний. Величинами x и у может быть, например, смещения материальной точки (частицы) из положения равновесия. В случае колеблющейся частицы величины , (2) определяют координаты частицы на плоскости xy. Частица будет двигаться по некоторой траектории, вид которой зависит от разности фаз обоих колебаний. Выражения (2) представляют собой заданное в параметрической форме уравнение этой траектории. Чтобы получить уравнение траектории в обычном виде, нужно исключить из уравнений (2) параметр t. Из первого уравнения следует, что (3) Соответственно (4) Развернем косинус во втором из уравнений (2) по формуле для косинуса суммы: Подставим вместо cos щ t и sinщt их значения (3) и (4): Преобразуем это уравнение (5) Это уравнение эллипса, оси которого повернуты относительно координатных осей х и у. Ориентация эллипса и его полуоси зависят довольно сложным образом от амплитуд A и В и разности фаз б. Попробуем найти форму траектории для нескольких частных случаев. 1. Разность фаз б равна нулю. В этом случае уравнение (5) упрощается следующим образом: Отсюда получается уравнение прямой: Результирующее движение является гармоническим колебанием вдоль этой прямой с частотой щ и амплитудой, равной (рис. 1 а). 2. Разность фаз б равна ±р. Из уравнение (5)имеет вид Следовательно, результирующее движение представляет собой гармоническое колебание вдоль прямой (рис. 1 б) Рис.13. При уравнение (5) переходит в уравнение эллипса, приведенного к координатным осям: Полуоси эллипса равны соответствующим амплитудам колебаний. При равенстве амплитуд А и В эллипс превращается в окружность. Случаи и отличаются направлением движения по эллипсу или окружности. Следовательно, равномерное движение по окружности радиуса R с угловой скоростью щ может быть представлено как сумма двух взаимно перпендикулярных колебаний: , (знак плюс в выражении для у соответствует движению против часовой стрелки, знак минус — движению по часовой стрелке). Если частоты взаимно перпендикулярных колебаний не одинаковы, то траектории результирующего движения имеют вид сложных кривых, называемых фигурами Лиссажу. Фигура Лиссажу для отношения частот 1:2 и разности фаз р/2 Фигура Лиссажу для отношения частот 3:4 и разности фаз р/2 |