Курсовая работа: Расчет параметров идеального газового потока в камере ракетного двигателя

Название: Расчет параметров идеального газового потока в камере ракетного двигателя
Раздел: Промышленность, производство
Тип: курсовая работа

°УХЭвбвТЮ ЯЮ ЮСаРЧЮТРЭШо АЮббШЩбЪЮЩ ДХФХаРжШШ БРЬРабЪШЩ іЮбгФРабвТХЭЭлЩ °наЮЪЮбЬШзХбЪШЩ ГЭШТХабШвХв ШЬХЭШ РЪРФХЬШЪР Б.ї. єЮаЮЫХТР

(ЅРжШЮЭРЫмЭлЩ ШббЫХФЮТРвХЫмбЪШЩ гЭШТХабШвХв)

єРдХФаР вХЯЫЮвХеЭШЪШ Ш вХЯЫЮТле ФТШУРвХЫХЩ

АРбзХвЭЮ-ЯЮпбЭШвХЫмЭРп ЧРЯШбЪР Ъ ЪгабЮТЮЩ аРСЮвХ:

«А°БЗµВ ї°А°јµВАѕІ ёґµ°»МЅѕіѕ і°·ѕІѕіѕ їѕВѕє° І є°јµАµ А°єµВЅѕіѕ ґІёі°Вµ»П»

ЯЮ ФШбжШЯЫШЭХ «јХеРЭШЪР ЦШФЪЮбвХЩ Ш УРЧЮТ»

ІРаШРЭв р13

ІлЯЮЫЭШЫ:

бвгФХЭв Уа. 2301

єЫШЯШЪЮТ Ѕ.О.

їаЮТХаШЫ:

Ъ.в.Э. ґШФХЭЪЮ °. °.

БРЬРаР 2010

АµДµА°В

єгабЮТРп аРСЮвР.

їЮпбЭШвХЫмЭРп ЧРЯШбЪР: 50 бва., 5 аШб., 4 вРСЫШж, 3 ЯаШЫЮЦХЭШп, 3 ШбвЮзЭШЪР.

іаРдШзХбЪРп ФЮЪгЬХЭвРжШп: 1 ЫШбв дЮаЬРвР A3.

є°Ѕ°» їµАµјµЅЅѕіѕ БµЗµЅёП, їАѕДё»М БІµАЕ·ІГєѕІѕіѕ Бѕї»°, єАёВёЗµБєѕµ БµЗµЅёµ, Бѕї»ѕ »°І°»П, ґ°І»µЅёµ, ВµјїµА°ВГА°, БєѕАѕБВМ, А°БЕѕґ, їАПјѕ№ Бє°Зѕє Гї»ѕВЅµЅёП, БВАГП і°·°, А°ґёГБ БµЗµЅёП Бѕї»°, і°·ѕІЛ№ їѕВѕє, ґѕ·ІГєѕІѕµ ВµЗµЅёµ і°·°, ёґµ°»МЅЛ№ і°·.

І ФРЭЭЮЩ ЪгабЮТЮЩ аРСЮвХ ТлЯЮЫЭХЭл аРбзХвл УХЮЬХваШзХбЪШе ЯРаРЬХваЮТ ЪРЬХал аРЪХвЭЮУЮ ФТШУРвХЫп, ЯРаРЬХваЮТ ШФХРЫмЭЮУЮ УРЧЮТЮУЮ ЯЮвЮЪР Т ЪРЬХаХ аРЪХвЭЮУЮ ФТШУРвХЫп, беХЬР ЪЮвЮаЮУЮ ЯаХФбвРТЫХЭР Т ЯаШЫЮЦХЭШШ, ЯЮбваЮХЭл УаРдШЪШ ШЧЬХЭХЭШп ЮбЭЮТЭле ТХЫШзШЭ.

іРЧЮТлЩ ЯЮвЮЪ ЯЮбвгЯРХв Т бТХаеЧТгЪЮТЮХ бЮЯЫЮ б ЭРзРЫмЭлЬ бХзХЭШХЬ 0 , гЧЪШЬ бХзХЭШХЬ г , ТлеЮФЭлЬ бХзХЭШХЬ a , ЯЫЮйРФШ ЪЮвЮале аРТЭл бЮЮвТХвбвТХЭЭЮ S0 , Sг , Sa . ёЧ бЮЯЫР УРЧ ТлвХЪРХв ТЮ ТЭХиЭоо баХФг, ФРТЫХЭШХ Т ЪЮвЮаЮЩ аРТЭЮ (ШбеЮФЭРп ЯЮбвРЭЮТЪР ЧРФРзШ) .


· °ґ°Ѕёµ

·РФРЭл бЫХФгойШХ ТХЫШзШЭл ЯРаРЬХваЮТ:

- ЮвЭЮиХЭШХ вХЯЫЮХЬЪЮбвШ УРЧР ЯаШ ЯЮбвЮпЭЭЮЬ ФРТЫХЭШШ Ъ ХУЮ вХЯЫЮХЬЪЮбвШ ЯаШ ЯЮбвЮпЭЭЮЬ ЮСкХЬХ .

- гФХЫмЭРп УРЧЮТРп ЯЮбвЮпЭЭРп .

- вХЬЯХаРвгал вЮаЬЮЦХЭШп УРЧЮТЮУЮ ЯЮвЮЪР ЯаШ ТвХЪРЭШШ ХХ Т ЪРЬХаг бУЮаРЭШп Ш Т ЪЮЭжХ ХХ (ЯХаХФ бЮЯЫЮЬ) .

- ФРТЫХЭШХ Т УРЧЮТЮЬ ЯЮвЮЪХ Т бХзХЭШШ 0 .

- ЮвЭЮиХЭШХ ЯЫЮйРФХЩ .

- аРФШгб гЧЪЮУЮ бХзХЭШп бЮЯЫР .

- ЮвЭЮиХЭШХ аРФШгбЮТ ЪРЬХал бУЮаРЭШп Ш ТлеЮФЭЮУЮ бХзХЭШп бЮЯЫР Ъ аРФШгбг .

- ЮвЭЮиХЭШХ ФЫШЭл бТХаеЧТгЪЮТЮЩ зРбвШ бЮЯЫР Ъ аРФШгбг .

- гУЫл ЬХЦФг ЪРбРвХЫмЭлЬШ Ъ ЯаЮдШЫо бЮЯЫР Т гЧЪЮЬ Ш ТлеЮФЭЮЬ бХзХЭШпе Ш Юбмо бЮЯЫР .

ґЮЯгйХЭШп

іРЧ ШФХРЫмЭлЩ, ЭХТпЧЪШЩ. ВХзХЭШХ УРЧР Т бЮЯЫХ бЯЫЮиЭЮХ, бвРжШЮЭРаЭЮХ, нЭХаУЮШЧЮЫШаЮТРЭЭЮХ. АРбеЮФ Т ЪРЦФЮЬ бХзХЭШШ ЮФШЭРЪЮТлЩ. І бХзХЭШШ 0 – ФЮЧТгЪЮТЮЩ УРЧЮТлЩ ЯЮвЮЪ. БЪРзЮЪ гЯЫЮвЭХЭШп Т УРЧЮТЮЬ ЯЮвЮЪХ ЯапЬЮЩ Ш нЭХаУЮШЧЮЫШаЮТРЭЭлЩ. ёЧ ЪРЭРЫР УРЧЮТлЩ ЯЮвЮЪ ТлвХЪРХв Т ЮЪагЦРойго баХФг б ФРТЫХЭШХЬ аРТЭлЬ ФРТЫХЭШо ЭРагЦЭЮЬг (pa =pЭ ). ¶ШТлХ бХзХЭШп бзШвРвм ЯЫЮбЪШЬШ бХзХЭШпЬШ, ЭЮаЬРЫмЭлЬШ ЮбШ ЯЮвЮЪР (ЮбШ бЮЯЫР).

АРббзШвлТРХЬлХ аХЦШЬл УРЧЮТЮУЮ ЯЮвЮЪР

І ЪгабЮТЮЩ аРСЮвХ аРббзШвлТРовбп бЫХФгойШХ аХЦШЬл ШФХРЫмЭЮУЮ ЯЮвЮЪР Т бТХаеЧТгЪЮТЮЬ бЮЯЫХ:

1) АРбзХвЭлЩ аХЦШЬ вХзХЭШп УРЧР, бЮЮвТХвбвТгойШЩ бТХаеЧТгЪЮТЮЬг бЮЯЫг (бЮЯЫг »РТРЫп).

2) ЅХаРбзХвЭлЩ аХЦШЬ вХзХЭШп УРЧР, бЮЮвТХвбвТгойШЩ бТХаеЧТгЪЮТЮЬг бЮЯЫг бЮ бЪРзЪЮЬ гЯЫЮвЭХЭШп Т ТлеЮФЭЮЬ бХзХЭШШ a.

3) ЅХаРбзХвЭлЩ аХЦШЬ вХзХЭШп УРЧР, бЮЮвТХвбвТгойШЩ бТХаеЧТгЪЮТЮЬг бЮЯЫг бЮ бЪРзЪЮЬ гЯЫЮвЭХЭШп Т бХзХЭШШ 5.

4) ЅХаРбзХвЭлЩ аХЦШЬ вХзХЭШп УРЧР, бЮЮвТХвбвТгойШЩ бТХаеЧТгЪЮТЮЬг бЮЯЫг бЮ бЪРзЪЮЬ гЯЫЮвЭХЭШп Т бХзХЭШШ 4.

5) ґЮЧТгЪЮТЮХ вХзХЭШХ УРЧР ЯЮ ТбХЬг ЪРЭРЫг, ЭЮ ЯаШ ЪаШвШзХбЪЮЬ бЮбвЮпЭШШ УРЧЮТЮУЮ ЯЮвЮЪР Т гЧЪЮЬ бХзХЭШШ (λг = 1).

БЮФХаЦРЭШХ

АµДµА°В........................................................................................................................................................................... 2

·°ґ°Ѕёµ........................................................................................................................................................................... 3

ёБїѕ»М·ѕІ°ЅЅЛµ БёјІѕ»Л......................................................................................................................... 6

1. їЮбваЮХЭШХ ЯаЮдШЫп ЪРЬХал аРЪХвЭЮУЮ ФТШУРвХЫп....................................................... 7

2. АРбзсв ЯХаТЮУЮ ТРаШРЭвР УРЧЮТЮУЮ ЯЮвЮЪР............................................................................. 8

3. АРбзсв ТвЮаЮУЮ ТРаШРЭвР УРЧЮТЮУЮ ЯЮвЮЪР........................................................................... 22

4. АРбзсв ваХвмХУЮ ТРаШРЭвР УРЧЮТЮУЮ ЯЮвЮЪР........................................................................ 24

5. АРбзсв зХвТсавЮУЮ ТРаШРЭвР УРЧЮТЮУЮ ЯЮвЮЪР.................................................................. 27

6. АРбзсв ЯпвЮУЮ ТРаШРЭвР УРЧЮТЮУЮ ЯЮвЮЪР............................................................................. 32

7. АРбзсв ШЬЯгЫмбЮТ УРЧЮТЮУЮ ЯЮвЮЪР............................................................................................ 36

8. АРбзсв бШЫ Ш впУШ........................................................................................................................................... 38

·РЪЫозХЭШХ............................................................................................................................................................. 40

БЯШбЮЪ ШбЯЮЫмЧгХЬле ШбвЮзЭШЪЮТ................................................................................................. 41

їАё»ѕ¶µЅёµ Р........................................................................................................................................................ 42

їАё»ѕ¶µЅёµ ±........................................................................................................................................................ 43

їАё»ѕ¶µЅёµ І........................................................................................................................................................ 46

ёБїѕ»М·ѕІ°ЅЅЛµ БёјІѕ»Л

r –аРФШгб, ЬЬ

S –ЯЫЮйРФм, ЬЬ2

q –УРЧЮФШЭРЬШзХбЪРп дгЭЪжШп аРбеЮФР ШЫШ ЯаШТХФХЭЭлЩ аРбеЮФ

λ –ЯаШТХФХЭЭРп бЪЮаЮбвм

M –зШбЫЮ јРеР

τ –іґД вХЬЯХаРвгал

π –іґД ФРТЫХЭШп

e –іґД ЯЫЮвЭЮбвШ

T* – вХЬЯХаРвгаР вЮаЬЮЦХЭШп, є

T – бвРвШзХбЪРп вХЬЯХаРвгаР, є

p* – ФРТЫХЭШХ вЮаЬЮЦХЭШп, їР

p – бвРвШзХбЪЮХ ФРТЫХЭШХ, їР

ρ* – ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп, ЪУ/Ь3

ρ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, ЪУ/Ь3

aЪа – ЪаШвШзХбЪРп бЪЮаЮбвм ЧТгЪР, Ь/б

a – ЬХбвЭРп бЪЮаЮбвм ЧТгЪР, Ь/б

c – бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР, Ь/б

G – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР, ЪУ/б

ƒ – іґД ШЬЯгЫмбР

pЭ – ФРТЫХЭШХ ТЮ ТЭХиЭХЩ баХФХ, їР

Д – ШЬЯгЫмб УРЧЮТЮУЮ ЯЮвЮЪР, Ѕ

σЯ – ЪЮнддШжШХЭв ШЧЬХЭХЭШп ФРТЫХЭШп Т ЯапЬЮЬ бЪРзЪХ гЯЫЮвЭХЭШп

σТ.а. – ЪЮнддШжШХЭв ШЧЬХЭХЭШп ФРТЫХЭШп ЯаШ ТЭХЧРЯЭЮЬ аРбиШаХЭШШ

σВ – ЪЮнддШжШХЭв ШЧЬХЭХЭШп ФРТЫХЭШп ЯаШ ЯЮФТЮФХ вХЯЫЮвл

P0-г – бШЫР ТЮЧФХЩбвТШп УРЧЮТЮУЮ ЯЮвЮЪР ЭР ФЮЧТгЪЮТго зРбвм бЮЯЫР, Ѕ

Pг- a – бШЫР ТЮЧФХЩбвТШп УРЧЮТЮУЮ ЯЮвЮЪР ЭР бТХаеЧТгЪЮТго зРбвм бЮЯЫР, Ѕ

P0- a – бШЫР ТЮЧФХЩбвТШп УРЧЮТЮУЮ ЯЮвЮЪР ЭР бЮЯЫЮ Т жХЫЮЬ, Ѕ

PТЭгв. – ТЭгваХЭЭпп бЮбвРТЫпойРп ЯЮЫЭЮЩ впУШ, Ѕ

PЭРа. – ЭРагЦЭРп бЮбвРТЫпойРп ЯЮЫЭЮЩ впУШ, Ѕ

P – ЯЮЫЭРп впУР ФТШУРвХЫп, Ѕ

1. їЮбваЮХЭШХ ЯаЮдШЫп ЪРЬХал аРЪХвЭЮУЮ ФТШУРвХЫп.

АРббзШвРХЬ ЧЭРзХЭШп ЯРаРЬХваЮТ аРЪХвЭЮУЮ ФТШУРвХЫп б ЯЮЬЮймо ШбеЮФЭле ФРЭЭле:

1) ФЫШЭР ЪРЬХал бУЮаРЭШп:

,

2) ФЫШЭР ФЮЧТгЪЮТЮЩ зРбвШ бЮЯЫР:

,

3) ФЫШЭР бТХаеЧТгЪЮТЮЩ зРбвШ бЮЯЫР:

,

4) аРФШгб ЪРЬХал бУЮаРЭШп:

,

5) аРФШгб УРЧЮТЮУЮ ЯЮвЮЪР ЯаШ ТеЮФХ Т ЪРЬХаг бУЮаРЭШп:

,

6) аРФШгб ТлеЮФЭЮУЮ бХзХЭШп бЮЯЫР:

,

7) еРаРЪвХаЭлХ аРббвЮпЭШп бХзХЭШЩ 1, 2, 3, 4, 5 бЮЮвТХвбвТХЭЭЮ:

x1 =0.35∙ xЪ =0.35∙134=46,9 ЬЬ;

x2 =0.5∙ xг =0.5∙123,0869=61,5435 ЬЬ;

x3 =0.2∙ xг =0.2∙123,0869=24,6174 ЬЬ;

x4 =0.2∙ xa =0.2∙241,87=48,3740 ЬЬ;

x5 =0.6∙ xa =0.6∙241,87=145,122 ЬЬ.

їЮ аРббзШвРЭЭлЬ ЯРаРЬХваРЬ ЯЮбваЮШЬ ЯаЮдШЫм ЪРЬХал бУЮаРЭШп бЬ. ЯаШЫЮЦХЭШХ. їЮ ЯаЮдШЫо ЪРЬХал ЮЯаХФХЫпХЬ аРФШгбл ЯаЮЬХЦгвЮзЭле аРбзсвЭле бХзХЭШЩ r2 , r3 , r4 , r5 :

, , , .

АРббзШвлТРХЬ ЯЫЮйРФШ ТбХе бХзХЭШЩ ЯЮ дЮаЬгЫХ:

УФХ – аРФШгб еРаРЪвХаЭЮУЮ бХзХЭШп, ЬЬ:

2. АРбзсв ЯХаТЮУЮ ТРаШРЭвР УРЧЮТЮУЮ ЯЮвЮЪР.

().

АРббзШвРХЬ ЯРаРЬХвал ЯЮвЮЪР ЯаШ бТХаеЧТгЪЮТЮЬ ШбвХзХЭШШ УРЧР ШЧ бЮЯЫР.

1) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «Ъ»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD ЮЯаХФХЫпХЬ ТХЫШзШЭг k ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп (бЬ. ЯаШЫЮЦХЭШХ 3), гзШвлТРп, звЮ Т ФРЭЭЮЬ бХзХЭШШ ФЮЧТгЪЮТЮЩ ЯЮвЮЪ, в. Х. :

,

ЯЮЫгзРХЬ;

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ.

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

2) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «0»:

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD ЮЯаХФХЫпХЬ ТХЫШзШЭг 0 ШЧ аХиХЭШп ЯаХЮСаРЧЮТРЭЭЮУЮ гаРТЭХЭШп ЪЮЫШзХбвТР ФТШЦХЭШп ФЫп УРЧР (бЬ. ЯаШЫЮЦХЭШХ 3), ЭРеЮФпйХУЮбп Т ЪРЬХаХ бУЮаРЭШп ЬХЦФг бХзХЭШпЬШ «0» Ш «k»), гзШвлТРп, звЮ Т ФРЭЭЮЬ бХзХЭШШ ФЮЧТгЪЮТЮЩ ЯЮвЮЪ, в. Х. :

,

ЯЮЫгзРХЬ .

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ аРбеЮФР, вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ.

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

ЅРЩФсЬ ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ 0– бвРвШзХбЪРп ЯЫЮвЭЮбвм,- бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

3) ІлзШбЫШЬ ЮбвРТиШХбп ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР Т бХзХЭШШ «k»:

ЅРЩФХЬ ЧЭРзХЭШХ ФРТЫХЭШп ШЧ ЯаХЮСаРЧЮТРЭЭЮУЮ гаРТЭХЭШп ЭХаРЧалТЭЮбвШ ФЫп ЦШТле бХзХЭШЩ «0» Ш «k» УРЧЮТЮУЮ ЯЮвЮЪР: ;

ЅРЩФсЬ ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ– бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

4) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «1»:

ЅРЩФХЬ λ1 зХаХЧ ФШбЪаШЬШЭРЭв

, УФХ ;

їЮЫгзРХЬ.

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ аРбеЮФР, вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ.

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

ЅРЩФХЬ ЧЭРзХЭШХ p1 ШЧ аХиХЭШп ЯаХЮСаРЧЮТРЭЭЮУЮ гаРТЭХЭШп ЭХаРЧалТЭЮбвШ:

ЅРЩФсЬ ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

5) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «2»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD ЮЯаХФХЫпХЬ ТХЫШзШЭг ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп (бЬ. ЯаШЫЮЦХЭШХ 3), гзШвлТРп, звЮ Т ФРЭЭЮЬ бХзХЭШШ ФЮЧТгЪЮТЮЩ ЯЮвЮЪ, в. Х. :

,

ЯЮЫгзРХЬ;

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ.

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

їЮбЫХ бХзХЭШп « k» ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

6) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «3»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD ЮЯаХФХЫпХЬ ТХЫШзШЭг ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп (бЬ. ЯаШЫЮЦХЭШХ 3), гзШвлТРп, звЮ Т ФРЭЭЮЬ бХзХЭШШ ФЮЧТгЪЮТЮЩ ЯЮвЮЪ, в. Х. :

,

ЯЮЫгзРХЬ ;

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ :

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

їЮбЫХ бХзХЭШп « k» ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:



ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

7) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «г»:

ґРЭЭЮХ бХзХЭШХ ЪаШвШзХбЪЮХ, ЯЮнвЮЬг: q(λг)=1, λг =1, Mг=1.

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

їЮбЫХ бХзХЭШп « k» ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ– бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р– аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

8) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «4»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD ЮЯаХФХЫпХЬ ТХЫШзШЭг ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп (бЬ. ЯаШЫЮЦХЭШХ 3), гзШвлТРп, звЮ Т ФРЭЭЮЬ бХзХЭШШ бТХаеЧТгЪЮТЮЩ ЯЮвЮЪ, в. Х. :

,

ЯЮЫгзРХЬ ;

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

їЮбЫХ бХзХЭШп « k» ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

9) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «5»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD ЮЯаХФХЫпХЬ ТХЫШзШЭг ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп (бЬ. ЯаШЫЮЦХЭШХ 3), гзШвлТРп, звЮ Т ФРЭЭЮЬ бХзХЭШШ бТХаеЧТгЪЮТЮЩ ЯЮвЮЪ, в. Х. :

,

ЯЮЫгзРХЬ ;

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

їЮбЫХ бХзХЭШп « k» ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

10) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «a»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD ЮЯаХФХЫпХЬ ТХЫШзШЭг ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп (бЬ. ЯаШЫЮЦХЭШХ 3), гзШвлТРп, звЮ Т ФРЭЭЮЬ бХзХЭШШ бТХаеЧТгЪЮТЮЩ ЯЮвЮЪ, в. Х. :

,

ЯЮЫгзРХЬ ;

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

їЮбЫХ бХзХЭШп « k» ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

3. АРбзсв ТвЮаЮУЮ ТРаШРЭвР УРЧЮТЮУЮ ЯЮвЮЪР.

().

АРббзШвРХЬ ЯРаРЬХвал ЯЮвЮЪР бЮ бЪРзЪЮЬ гЯЫЮвЭХЭШп Т ТлеЮФЭЮЬ бХзХЭШШ ЪРЬХал аРЪХвЭЮУЮ ФТШУРвХЫп.

;

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

ѕЯаХФХЫШЬ ЪЮнддШжШХЭв ШЧЬХЭХЭШп ФРТЫХЭШп Т ЯапЬЮЬ бЪРзЪХ гЯЫЮвЭХЭШп ЯЮ дЮаЬгЫХ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

4. АРбзсв ваХвмХУЮ ТРаШРЭвР УРЧЮТЮУЮ ЯЮвЮЪР.

().

АРббзШвРХЬ ЯРаРЬХвал ЯЮвЮЪР бЮ бЪРзЪЮЬ гЯЫЮвЭХЭШп Т бХзХЭШШ «5» ЪРЬХал аРЪХвЭЮУЮ ФТШУРвХЫп.

1) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «5ЧР »:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

ВХЬЯХаРвгаР вЮаЬЮЦХЭШп ЧР бЪРзЪЮЬ гЯЫЮвЭХЭШп ЮбвРХвбп ЯЮбвЮпЭЭЮЩ:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

ѕЯаХФХЫШЬ ЪЮнддШжШХЭв ШЧЬХЭХЭШп ФРТЫХЭШп Т ЯапЬЮЬ бЪРзЪХ гЯЫЮвЭХЭШп ЯЮ дЮаЬгЫХ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

2) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «a»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

;

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD (бЬ. ЯаШЫЮЦХЭШХ 3, бва. 68) ЮЯаХФХЫпХЬ ТХЫШзШЭг ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп:

,

ЯЮЫгзРХЬ

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

їЮбЫХ бХзХЭШп « k» ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

5. АРбзсв зХвТсавЮУЮ ТРаШРЭвР УРЧЮТЮУЮ ЯЮвЮЪР.

().

АРббзШвРХЬ ЯРаРЬХвал ЯЮвЮЪР бЮ бЪРзЪЮЬ гЯЫЮвЭХЭШп Т бХзХЭШШ «4» ЪРЬХал аРЪХвЭЮУЮ ФТШУРвХЫп.

1) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «4ЧР »:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

ВХЬЯХаРвгаР вЮаЬЮЦХЭШп ЧР бЪРзЪЮЬ гЯЫЮвЭХЭШп ЮбвРХвбп ЯЮбвЮпЭЭЮЩ:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

ѕЯаХФХЫШЬ ЪЮнддШжШХЭв ШЧЬХЭХЭШп ФРТЫХЭШп Т ЯапЬЮЬ бЪРзЪХ гЯЫЮвЭХЭШп ЯЮ дЮаЬгЫХ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

2) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «5»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

;

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD(бЬ. ЯаШЫЮЦХЭШХ 3, бва. 70) ЮЯаХФХЫпХЬ ТХЫШзШЭг ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп:

,

ЯЮЫгзШЬ ;

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

ВХЬЯХаРвгаР вЮаЬЮЦХЭШп ЧР бЪРзЪЮЬ гЯЫЮвЭХЭШп ЮбвРХвбп ЯЮбвЮпЭЭЮЩ:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

ґРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

3) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «a»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

;

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD (бЬ. ЯаШЫЮЦХЭШХ 3, бва. 71) ЮЯаХФХЫпХЬ ТХЫШзШЭг ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп:

,

ЯЮЫгзШЬ ;

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

їЮбЫХ бХзХЭШп « k» ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

6. АРбзсв ЯпвЮУЮ ТРаШРЭвР УРЧЮТЮУЮ ЯЮвЮЪР.

().

АРббзШвРХЬ ЯРаРЬХвал ЯЮвЮЪР бЮ бЪРзЪЮЬ гЯЫЮвЭХЭШп Т бХзХЭШШ «г» ЪРЬХал аРЪХвЭЮУЮ ФТШУРвХЫп.

1) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «4»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

;

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD (бЬ. ЯаШЫЮЦХЭШХ 3, бва. 72) ЮЯаХФХЫпХЬ ТХЫШзШЭг ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп:

,

ЯЮЫгзШЬ ;

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

ВХЬЯХаРвгаР вЮаЬЮЦХЭШп ЧР бЪРзЪЮЬ гЯЫЮвЭХЭШп ЮбвРХвбп ЯЮбвЮпЭЭЮЩ:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

ґРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

2) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «5»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

;

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD (бЬ. ЯаШЫЮЦХЭШХ 3, бва. 70) ЮЯаХФХЫпХЬ ТХЫШзШЭг ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп:

,

ЯЮЫгзШЬ ;

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

ВХЬЯХаРвгаР вЮаЬЮЦХЭШп ЧР бЪРзЪЮЬ гЯЫЮвЭХЭШп ЮбвРХвбп ЯЮбвЮпЭЭЮЩ:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

ґРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

3) АРббзШвРХЬ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР ФЫп бХзХЭШп «a»:

їаШТХФХЭЭлЩ аРбеЮФ ФЫп ФРЭЭЮУЮ бХзХЭШп:

;

Б ШбЯЮЫмЧЮТРЭШХЬ ЬРвХЬРвШзХбЪЮУЮ ЯРЪХвР MathCAD (бЬ. ЯаШЫЮЦХЭШХ 3, бва. 71) ЮЯаХФХЫпХЬ ТХЫШзШЭг ШЧ аХиХЭШп ЭХЫШЭХЩЭЮУЮ гаРТЭХЭШп:

,

ЯЮЫгзШЬ ;

іРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ ЮЯаХФХЫпХЬ ЯЮ дЮаЬгЫРЬ:

УФХ - УРЧЮФШЭРЬШзХбЪШХ дгЭЪжШШ вХЬЯХаРвгал, ФРТЫХЭШп Ш ЯЫЮвЭЮбвШ бЮЮвТХвбвТХЭЭЮ

ЅРЩФсЬ зШбЫЮ јРеР:

ѕЯаХФХЫХЭШХ ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ - ЪаШвШзХбЪРп Ш ЬХбвЭРп бЪЮаЮбвШ ЧТгЪР бЮЮвТХвбвТХЭЭЮ, Р - бвРвШзХбЪРп вХЬЯХаРвгаР

ЅРЩФХЬ бЪЮаЮбвм УРЧЮТЮУЮ ЯЮвЮЪР:

їЮбЫХ бХзХЭШп « k» ФРТЫХЭШХ Ш ЯЫЮвЭЮбвм вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ:

ѕЯаХФХЫШЬ ЭХФЮбвРойШХ ЯРаРЬХвал УРЧЮТЮУЮ ЯЮвЮЪР:

УФХ – бвРвШзХбЪРп ЯЫЮвЭЮбвм, - бвРвШзХбЪЮХ ФРТЫХЭШХ, Р – аРбеЮФ УРЧЮТЮУЮ ЯЮвЮЪР

7. АРбзсв ШЬЯгЫмбЮТ УРЧЮТЮУЮ ЯЮвЮЪР.

АРббзШвРХЬ ЧЭРзХЭШп УРЧЮФШЭРЬШзХбЪЮЩ дгЭЪжШШ «f» Ш ЪЮЫШзХбвТР ФТШЦХЭШп УРЧЮТЮУЮ ЯЮвЮЪР «Д» ЯЮ дЮаЬгЫРЬ:

;

їХаТлЩ ТРаШРЭв:

ІвЮаЮЩ ТРаШРЭв:

ВаХвШЩ ТРаШРЭв:

ЗХвТХавлЩ ТРаШРЭв:

їпвлЩ ТРаШРЭв:

8. АРбзсв бШЫ Ш впУШ.

АРббзШвРХЬ ЪЮнддШжШХЭвл ФРТЫХЭШп вЮаЬЮЦХЭШп ФЫп ТРаШРЭвЮТ аРСЮвл ЪРЬХал бУЮаРЭШп 1-5:

єЮнддШжШХЭвл ФРТЫХЭШп вЮаЬЮЦХЭШп σΠ СлЫШ ЯЮЫгзХЭл аРЭХХ.

ѕЯаХФХЫпХЬ ЧЭРзХЭШп pH ШЧ гбЫЮТШп, звЮ Т ЫоСЮЬ ФЮЧТгЪЮТЮЬ ЯЮвЮЪХ ЯаШ ШбвХзХЭШШ ТЮ ТЭХиЭоо баХФг ФРТЫХЭШХ аРТЭЮ pH :

·ЭРзХЭШп бШЫ P0- k Ш Pk - y ФЫп ТбХе ТРаШРЭвЮТ ЮФШЭРЪЮТл Ш аРТЭл:

ѕбвРЫмЭлХ бШЫл ЭРЩФХЬ ЯЮ дЮаЬгЫРЬ:

·РЪЫозХЭШХ

І аРСЮвХ аРббЬЮваХЭЮ ЯЮТХФХЭШХ УРЧР Т ЪРЭРЫХ ЯХаХЬХЭЭЮУЮ бХзХЭШп ЭР бТХаеЧТгЪЮТле Ш ФЮЧТгЪЮТле аХЦШЬРе, бЮ бЪРзЪРЬШ гЯЫЮвЭХЭШп Ш СХЧ ЭШе. ІлзХазХЭЮ бХзХЭШХ ЪРЭРЫР. І аХЧгЫмвРвХ аРСЮвл ШЬХХЬ ЧЭРзХЭШп ЮбЭЮТЭле ЯРаРЬХваЮТ УРЧЮТЮУЮ ЯЮвЮЪР, ТХЫШзШЭг аРбеЮФР ЯЮ бХзХЭШпЬ ЪРЭРЫР, ЧЭРзХЭШп бЪЮаЮбвХЩ УРЧЮТЮЩ бвагШ, ЧЭРзХЭШп бШЫ ТЧРШЬЮФХЩбвТШп ЯЮвЮЪР бЮ бвХЭЪРЬШ бЮЯЫР. T*1,2 =293 є, T*Ъ-РЧР =2600є; p*0 = 5,152, p*1 = 5,1298, p*Ъ-РЧР =4,9254 јїР;ρ*0 = 61,05 ЪУ/Ь3 ρ*1 = 60,71 ЪУ/Ь3 , ρ*Ъ-РЧР = 6,5777 ЪУ/Ь3 ; РЪа0-1 = 310,38 Ь/б, РЪаЪ-РЧР = 924,58Ь/б; G0 =ρcS0 =53,64ЪУ/б, G1 =ρcS1 =53,96ЪУ/б, GЪ-РЧР =ρcSЪ-РЧР =53,94ЪУ/б-Т Т ШФХРЫмЭЮЬ бЫгзРХ нвШ ЯРаРЬХвал аРТЭл ШЧ-ЧР ЮЪагУЫХЭШп ТлзШбЫХЭШЩ нвШ ЧЭРзХЭШп аРЧЫШзРовбп. АРббзШвРЭЭлХ Т бШбвХЬХ MathCAD нвШ ЧЭРзХЭШп аРТЭл. їЮбваЮХЭл УаРдШЪШ ЧРТШбШЬЮбвХЩ ЮбЭЮТЭле еРаРЪвХаШбвШЪ ЯЮвЮЪР Юв бХзХЭШп, Р вРЪЦХ УаРдШЪШ ЧРТШбШЬЮбвХЩ бЪЮаЮбвШ ЯЮвЮЪР Т ТлеЮФЭЮЬ бХзХЭШШ Ш бШЫ ТЧРШЬЮФХЩбвТШп ЯЮвЮЪР бЮ бвХЭЪРЬШ ЪРЭРЫР.

єРЪ ТШФЭЮ ШЧ УаРдШЪЮТ, ЭР аРбзХвЭЮЬ аХЦШЬХ ЭРСЫоФРХвбп ЧЭРзШвХЫмЭЮХ гТХЫШзХЭШХ бЪЮаЮбвШ ЯЮвЮЪР ЭР ЯаЮвпЦХЭШШ ТбХУЮ ЪРЭРЫР. ІЬХбвХ б гТХЫШзХЭШХЬ бЪЮаЮбвШ, гЬХЭмиРХвбп ФРТЫХЭШХ, ЯЫЮвЭЮбвм, вХЬЯХаРвгаР Ш бЪЮаЮбвм ЧТгЪР Т УРЧХ, ЯРаРЬХвал вЮаЬЮЦХЭШп ЮбвРовбп ЯЮбвЮпЭЭлЬШ.

ёЧ ЯаХФбвРТЫХЭЭле УаРдШЪЮТ ТШФЭЮ аХЧЪЮХ ШЧЬХЭХЭШХ ЯРаРЬХваЮТ ЯЮвЮЪР ЭР ЭХаРбзХвЭле аХЦШЬРе ЯаШ ЭРЫШзШШ бЪРзЪЮТ гЯЫЮвЭХЭШЩ Ш ЭР ФЮЧТгЪЮТле аХЦШЬРе: ЧЭРзШвХЫмЭЮХ бЭШЦХЭШХ бЪЮаЮбвШ ЯЮвЮЪР, гТХЫШзХЭШХ ФРТЫХЭШп, ЯЫЮвЭЮбвШ, вХЬЯХаРвгал Ш бЪЮаЮбвШ ЧТгЪР Т УРЧХ, ШЧЬХЭповбп ЯРаРЬХвал вЮаЬЮЦХЭШп. ІбЫХФбвТШХ ТбХУЮ нвЮУЮ гЬХЭмиРХвбп впУР. їЮнвЮЬг ЭХаРбзХвЭлХ аХЦШЬл пТЫповбп ЭХЦХЫРвХЫмЭлЬШ Ш ФРЦХ ЭХФЮЯгбвШЬлЬШ ФЫп бТХаеЧТгЪЮТЮУЮ бЮЯЫР.

БЯШбЮЪ ШбЯЮЫмЧгХЬле ШбвЮзЭШЪЮТ

1. АРбзХв ШФХРЫмЭЮУЮ УРЧЮТЮУЮ ЯЮвЮЪР Т ЪРЬХаХ аРЪХвЭЮУЮ ФТШУРвХЫп /І.°. єгаЮзЪШЭ, °.Б. ЅРвРЫХТШз, °.ј. ЖлУРЭЮТ, °.°. ґШФХЭЪЮ// јХвЮФШзХбЪШХ гЪРЧРЭШп: –БРЬРаР: Бі°Г, 2003. -20б.

2. °СаРЬЮТШз і.Ѕ. їаШЪЫРФЭРп УРЧЮТРп ФШЭРЬШЪР, 5-Х ШЧФРЭШХ. ЗРбвм I. -ј.: ЅРгЪР, 1991. -597б. 4-Х ШЧФРЭШХ. –ј.: ЅРгЪР, 1976. -888б.

3. БХаУХЫм ѕ.Б. їаШЪЫРФЭРп УШФаЮУРЧЮФШЭРЬШЪР. –ј.: јРиШЭЮбваЮХЭШХ, 1981. -374б.