Курсовая работа: Мультипликативность стационарного распределения в открытых сетях с многорежимными стратегиями
Название: Мультипликативность стационарного распределения в открытых сетях с многорежимными стратегиями Раздел: Рефераты по коммуникации и связи Тип: курсовая работа |
Курсовая работа "Мультипликативность стационарного распределения в открытых сетях с многорежимными стратегиями обслуживания" Важными задачами для развития современного общества являются сбор, обработка, хранение и распространение информации. Передача информации представляет собой основу для решения этих задач и потому требует тщательного изучения. Адекватное описание процесса передачи информации с помощью математических моделей может быть осуществлено в рамках теории массового обслуживания. При этом для многих реальных систем такой процесс моделируется посредством сетей массового обслуживания. Например, к указанному результату приводит математическое моделирование мультипрограммных вычислительных систем и анализ их производительности, проектирование и анализ сетей передачи данных и сетей ЭВМ. В начале XX века датский ученый А.К. Эрланг, работавший на копенгагенской телефонной станции, поставил и решил ряд новых математическтх задач, позволивших оценивать характеристики телефонных и телеграфных линий связи. Это способствовало возникновению нового направления в теории вероятностей – теории массового обслуживания. На начальной стадии своего развития теория массового обслуживания имела дело с системами массового обслуживания, которые описываются потоками однородных заявок, поступающих в систему, процедурами обслуживания с помощью одного или нескольких каналов, процедурами формирования очередей и способами организации процесса ожидания заявок. Строгое научное описание случайных процессов в теории массового обслуживания и их всестороннее исследование впервые было осуществлено А.Я. Хинчиным. Он исследовал одноканальную систему с ожиданием, простейшим входным потоком и рекуррентным обслуживанием, установив для нее так называемый основной закон стационарной очереди: стационарное распределение числа заявок в системе совпадает с их стационарным распределением в случайные моменты ухода заявок из системы. Большой вклад в развитие теории массового обслуживания внесли Ю.К. Беляев, А.А. Боровков, Б.В. Гнеденко, Н. Джейсуолл, Дж.Р. Джексон, Ф.П. Келли, Дж. Кендалл, Дж.Ф.С. Кингмэн, Л. Клейнрок, Г.П. Климов, И.Н. Коваленко, С. Пальм, Ф. Поллачек, Ю.В. Прохоров, Дж. Риордан, Т. Саати, В.Л. Смит и др. В 1957 г. Дж.Р. Джексон впервые ввел в рассмотрение понятие открытой сети массового обслуживания ([99]), а в 1967 г. Гордон и Ньюэлл ввели аналогичное понятие замкнутой сети ([91]). В отличие от системы массового обслуживания сеть представляет собой более сложное образование, состоящее из систем массового обслуживания, называемых узлами сети, которые взаимодействуют между собой с помощью некоторого вероятностного механизма. В открытых сетях заявки могут поступать извне, а также уходить из сети. В замкнутых сетях сохраняется постоянное число заявок, которые с помощью случайной маршрутизации могут перемещаться между узлами сети; при этом поступление заявок в сеть и уход заявок из сети невозможны. Результаты Джексона и Гордона-Ньюэлла не использовались до тех пор, пока в 1971 г. Ф.Р. Мур [115] не обнаружил, что замкнутые сети адекватно описывают вычислительные системы со многими ресурсами. С этого момента теория сетей обслуживания стала быстро развиваться благодаря задачам, связанным с математическим моделированием мультипрограммных вычислительных систем и анализом их производительности, с проектированием и анализом сетей передачи данных и сетей ЭВМ. Дополнительный толчок к дальнейшему развитию теории дала разработка и использование в повсеместной практике различных глобальных и локальных сетей таких, например, как EZERNET, INTERNET и т.д. Значительный вклад в развитие теории сетей внесли Г.П. Башарин, А.А. Боровков, Э. Геленбе, Дж. Джексон, В.А. Ивницкий, Ф.П. Келли, Д. Кениг, Л. Клейнрок, Ю.В. Малинковский, М. Миязава, Б. Меламед, Р. Мюнтц, С.Е.М. Перс, П.К. Поллетт, А.Н. Рыбко, Р. Серфозо, Ю.М. Сухов, П. Тейлор, А.Л. Толмачев, Д. Тоусли, П. Уиттли, Дж. Уолрэнд, Г.И. Фалин, В. Хендерсон, Х. Чао, К. Ченди, Р. Шассбергер и многие другие. Состояние сети массового обслуживания обычно характеризуется вектором, координаты которого описывают состояния отдельных узлов сети. В силу многомерности случайного процесса состояний и статистической зависимости между координатами исследование сетей массового обслуживания на порядок сложнее, чем исследование систем массового обслуживания. Даже в случае экспоненциальных сетей, когда случайный процесс состояний является марковским, его эргодическое стационарное распределение удовлетворяет настолько сложной системе уравнений, что решить ее удается в основном только тогда, когда решение имеет форму произведеня. Множители в этом произведении зависят только от свойств индивидуальных узлов. В имеющейся литературе по стационарному распределению экспоненциальных сетей практически не рассматриваются сети с ненадежными или частично ненадежными приборами. В считанных работах рассмотрены только очень частные вырожденные случаи и то для сетей, состоящих из двух узлов. В то же время в практических ситуациях оборудование может частично или полностью выходить из строя. Например, при работе на персональном компьютере очень часто нарушаются функциональные связи между некоторыми файлами, программами или другими элементами, хотя компьютер продолжает работать. Налицо частичная потеря работоспособности, а значит, уменьшение интенсивности обслуживания. Поэтому в диссертационной работе предпринята попытка построения моделей, адекватно описывающих такую ситуацию. Рассмотрены экспоненциальные сети с многорежимными стратегиями обслуживания, в которых обслуживающие устройства в узлах частично ненадежны и в различных режимах функционирования работают с разными интенсивностями. Для таких сетей находится инвариантная вероятностная мера в мультипликативной форме. Рассматриваются открытые сети массового обслуживания с простейшим входящим потоком, экспоненциальным обслуживанием в узлах и марковской маршрутизацией. Однолинейные узлы могут работать в нескольких режимах, время переключения с одного режима на другой имеет показательное распределение. Переключение происходит только на соседние режимы. Устанавливается условие квазиобратимости узлов, условие эргодичности сети и для квазиобратимого случая находится стационарное распределение состояний сети в мультипликативной форме. Постановка задачи В подавляющем числе работ, посвященных сетям массового обслуживания с мультипликативной формой стационарного распределения, используется понятие квазиобратимости. Это вызвано тем, что квазиобратимость узлов гарантирует существование инвариантной меры в форме произведения для соответствующего сети марковского процесса. Здесь нами также используется понятие квазиобратимости. Аналитические модели сетей с ненадежными приборами почти не рассматривались в литературе в силу сложности нахождения инвариантной меры. Наша постановка позволяет исследовать сети, в которых приборы могут частично выходить из строя, работая при этом в «щадящем» режиме. В сеть, состоящую из Переход с режима 0 в режим 1 можно трактовать как частичную потерю работоспособности прибора, влекущую уменьшение интенсивности обслуживания с величины Состояние сети в момент времени Предположим, что имеет единственное решение Цель 2.1 состоит в установлении условий эргодичности где Отметим, что интенсивности перехода для всех иных состояний Анализ изолированного узла Для упрощения обозначений в данном разделе будет опускаться индекс Для «заявко-сохраняющих» систем массового обслуживания (т.е. для которых совпадают средние интенсивности поступления и ухода заявок) один из возможных способов определения квазиобратимости выглядит следующим образом. Если на вход системы направлять простейший поток заявок с параметром Здесь где Для рассматриваемой нами задачи условие квазиобратимости (2.1.9) принимает вид а условие обратимости (2.1.10) – форму Лемма 1.1 [43, C.131] . Если для рассматриваемой системы входящий поток является простейшим, то обратимость и квазиобратимость эквивалентны . Д о к а з а т.е. л ь с т в о. Достаточно показать, что при выполнении (2.1.3) – (2.1.8) из (2.1.11) следует (2.1.12). Сначала докажем, что для всех При Тогда из (2.1.4) с учетом (2.1.14) и (2.1.11) при Теперь докажем, что для всех Тогда (2.1.12) вытекает из (2.1.7), (2.1.11) и (2.1.15). Лемма доказана. Лемма 1.2 [43, C.131] . Для квазиобратимости изолированного узла необходимо и достаточно выполнения условий При выполнении (2.1.16) для эргодичности Финальное стационарное распределение процесса где предполагается, что произведение, в котором нижний индекс больше верхнего, равно единице, а Д о к а з а т.е. л ь с т в о. Рассмотрим случайное блуждание по точкам с целочисленными координатами первого квадранта плоскости с возможными переходами в соседние (слева, справа, сверху, снизу) состояния и обычной модификацией для точек на координатных осях. Покажем, что для его обратимости необходимо и достаточно, чтобы для всех что выражает равенство произведения интенсивностей перехода по замкнутому пути, проходящему через вершины элементарного квадрата Более того, известно, что для обратимости достаточно, чтобы условие (2.1.21) выполнялось для любых замкнутых путей из Для рассматриваемого нами блуждания (2.1.20) превращается в (2.1.16), что доказывает первое утверждение леммы 2.2. Из (2.1.11) следует, что а из (2.1.12) вытекает, что Подстановка (2.1.23) в (2.1.22) доказывает (2.1.18). Достаточность сходимости ряда (2.1.17) для эргодичности Стационарное распределение сети Следуя [32,33], Теорема 1.1 [43, C.132] . Для того, чтобы стационарное распределение открытой сети с многорежимными стратегиями обслуживания в узлах представлялось в форме произведения (2.1.2), необходимо и достаточно, чтобы в нетерминальных узлах выполнялось условие При выполнении этого условия для эргодичности марковского процесса где причем для случаев, когда Д о к а з а т.е. л ь с т в о. В Докажем, что при выполнении условия (2.1.24) процесс где Замечание 2.1
. Отметим, что для эргодичности марковского процесса 1) сходится ряд Здесь условие 2) гарантирует регулярность марковского процесса, который не может за конечное время делать бесконечное число скачков из одного состояния в другое. Замечание 2.2 . Если условие (2.1.24) выполнено во всех узлах и ряд (2.1.25) сходится, то получается простой алгоритм для нахождения стационарных вероятностей: 1. Решается система линейных уравнений (2.1.1). 2. Проверяется выполнение условия (2.1.24). 3. Определяется 4. Определяются где (Формулы (2.1.28), (2.1.29) получаются из (2.1.18), (2.1.19) с учетом персонификации 5. Находится стационарное распределение состояний сети При этом нормировку вероятностей можно производить не Замечание 2.3 . Нетрудно понять, что совместное стационарное распределение чисел заявок в узлах имеет следующую форму: где а совместное стационарное распределение режимов работы узлов – форму: где Исходя из этих соотношений можно построить также алгоритм подсчета числовых характеристик узлов в стационарном режиме. Например, можно найти среднее стационарное число заявок в каждом узле, средний стационарный режим работы каждого узла и т.п. В принципе можно построить алгоритм нахождения совместной стационарной производящей функции чисел заявок и режимов работы в узлах сети, алгоритмы нахождения совместной производящей функции чисел заявок и нахождения совместной производящей функции режимов работы узлов в установившемся состоянии. Пусть Следствие 1.1 [43, C.133]
. Потоки
Заметим, что если условию (2.1.23) подчиняются все узлы, то 2 Сети с переключением режимов при определенном количестве заявок в узлеПусть Интенсивности перехода из состояния Марковский процесс Глобальные уравнения равновесия для стационарных вероятностей этого марковского процесса имеют следующую форму: В 2.1 исследовался случай Пусть Рассмотрим марковский процесс для всех иных состояний для для для Мы свяжем стационарное распределение Лемма 2.3 . Если для рассматриваемой системы входящий поток является простейшим, то обратимость и квазиобратимость эквивалентны . Д о к а з а т.е. л ь с т в о. Для изолированного узла условие квазиобратимости (2.1.9) принимает вид а условие обратимости (2.1.10) – форму и для Достаточно показать, что при выполнении (2.2.2) – (2.2.7) из (2.2.9) следует (2.2.10). Пусть Тогда из (2.2.5) с учетом (2.2.11) и (2.2.9) для состояний Лемма 2.4 [45, C.184]
. Для квазиобратимости изолированного а) для
б) для всех
При выполнении (2.2.12) для эргодичности где
где предполагается, что произведение, в котором нижний индекс больше верхнего, равно единице, а Д о к а з а т.е. л ь с т в о. Рассмотрим случайное блуждание по точкам с целочисленными координатами первого квадранта плоскости, задаваемое уравнениями (2.2.2) – (2.2.7). Как уже ранее говорилось, для обратимости стационарного марковского процесса необходимо и достаточно, чтобы выполнялось циклическое условие Колмогорова: для любых различных состояний Более того, известно, что для обратимости достаточно, чтобы условие (2.2.18) выполнялось для любых замкнутых путей из Отметим также, что в силу того, что примененные в доказательстве элементарные квадраты и прямоугольники имеют в качестве замкнутых путей, идущих по их границам минимальные циклы, т.е. замкнутые пути с минимальным числом вершин, то условия (2.2.12) и (2.2.13) нельзя, вообще говоря, ослабить, и они являются минимально достаточными. Докажем, что стационарное распределение изолированного узла в фиктивной окружающей среде имеет форму (2.2.15), (2.2.16). Полагая в (2.2.10) откуда получаем Из (2.2.9) для Для таких же в частности, Подставляя (2.2.21) в (2.2.19), а затем подставляя полученное равенство в (2.2.20), будем иметь для Тем самым доказано (2.2.15). Для Полагая в (2.2.10) откуда Далее, из (2.2.9) Подставляя (2.2.24) в (2.2.23), а затем полученное равенство в (2.2.22), для Таким образом, (2.2.16) доказано. Наконец, (2.2.17) следует из того, что сумма всех стационарных вероятностей равна единице: Достаточность сходимости ряда (2.2.14) для эргодичности Основной результат 2.2 заключается в следующем. Теорема 2.2. [45, C.184]
Для выполнения (2.2.8) необходимо и достаточно, чтобы в нетерминальных узлах выполнялись условия (2.2.12), (2.2.13). При выполнении этого условия для эргодичности марковского процесса где При этом в нетерминальных узлах стационарное распределение процесса Д о к а з а т.е. л ь с т в о. В Докажем, что при выполнении условия (2.2.25) процесс где Замечание 2.3
. Отметим, что для эргодичности марковского процесса для всех 1) сходятся ряды Здесь условие 2) гарантирует регулярность марковского процесса, который не может за конечное время делать бесконечное число скачков из одного состояния в другое. Замечание 2.4 . Если условия (2.2.12), (2.2.13) выполнены во всех узлах и ряд (2.2.25) сходится, то получается простой алгоритм для нахождения стационарных вероятностей: 1. Решается система линейных уравнений (2.2.1). 2. Проверяется выполнение условий (2.2.12), (2.2.13). 3. Определяется 4. Определяются 5. Находится стационарное распределение состояний сети При этом нормировку вероятностей можно производить не Замечание 2.5 . Нетрудно понять, что совместное стационарное распределение чисел заявок в узлах имеет следующую форму: где а совместное стационарное распределение режимов работы узлов – форму: где Здесь которое, как упоминалось выше, конечно или счетно. Исходя из этих соотношений можно построить также алгоритм подсчета числовых характеристик узлов в стационарном режиме. Например, можно найти среднее стационарное число заявок в каждом узле, средний стационарный режим работы каждого узла и т.п. В принципе можно построить алгоритм нахождения совместной стационарной производящей функции чисел заявок и режимов работы в узлах сети, алгоритмы нахождения совместной производящей функции чисел заявок и нахождения совместной производящей функции режимов работы узлов в установившемся состоянии. Пусть Следствие 2.2
. Потоки
Заметим, что если условиям (2.2.12), (2.2.13) подчиняются все узлы, то 3. Примеры открытых сетей с переключением режимовВ 2.2 рассматривалась достаточно общая модель открытой сети с многорежимными стратегиями. Здесь рассматривается несколько полезных для приложений частных случаев этой модели. Во всех рассматриваемых ниже примерах предполагается, что для Случай
Следствие 2.3.
Для того, чтобы стационарное распределение марковского процесса Множители в (2.2.8) имеют форму где В следующих двух случаях стационарное распределение всегда имеет форму произведения, поскольку марковский процесс, описывающий изолированный узел в фиктивной окружающей среде, обратим. Поэтому не надо накладывать никаких ограничений типа (2.2.12), (2.2.13). Случай
Следствие 2.4.
Марковский процесс где Случай
Следствие 2.5.
Марковский процесс где В работе рассмотрена задача установления необходимых и достаточных условий, которые надо наложить на изолированные узлы открытой сети массового обслуживания с многорежимными стратегиями обслуживания, чтобы стационарное распределение состояний сети имело мультипликативную форму с множителями, зависящими от состояний отдельных узлов. При этом изолированные узлы помещаются в фиктивную окружающую среду, характеризующуюся поступлением в них пуассоновских потоков заявок. Такой критерий точечной независимости состояний открытой сети в стационарном режиме ее работы установлен как для случая, когда интенсивности перехода в соседние режимы работы строго положительны при любых числах заявок в узлах, так и для случая, когда при определенных числах заявок в узлах они строго положительны, а при других числах все они равны нулю. При выполнении установленных условий определены достаточные условия эргодичности марковского процесса, описывающего состояния сети, и в аналитической форме найдены множители в мультипликативном представлении стационарного распределения. Построен алгоритм для расчета стационарных вероятностей состояний сети. Доказано также, что выходящие из сети потоки заявок являются пуассоновскими, статистически не зависящими друг от друга для разных узлов. Список использованных источников 1. Анисимов B.B., Лебедев Е.А. Стохастические сети обслуживания. Марковские модели. – Киев: Лыбидь, 1992. – 205 с. 2. Башарин Г.П., Бочаров П.П., Коган Я.А. Анализ очередей в вычислительных сетях. – М.: Наука. – 1989. – 336 с. 3. Башарин Г.П., Толмачев А.Л. Некоторые результаты теории сетей массового обслуживания // Методы развития теории телетрафика. – М. – 1970. – С. 52–65. 4. Башарин Г.П., Толмачев А.Л. Теория сетей массового обслуживания и ее приложения к анализу информационно-вычислительных систем // Итоги науки и техники. – М., 1983. – Т.21. – С. 3–119. – (Сер. Теория вероятностей. Матем. статистика. Теор. кибернетика / ВИНИТИ). 5. Бочаров П.П., Печинкин А.В. Теория массового обслуживания: Учебник. – М.: РУДН, 1995. – 529 с. 6. Гихман И.И., Скороход А.В. Введение в теорию случайных процессов. – М.: Наука, 1977. – 568 с. 7. Горцев А.М., Назаров А.А., Терпугов А.Ф. Управление и адаптация в системах массового обслуживания. – Томск: ТГУ, 1978. – 208 с. 8. Добрушин Р.Л., Кельберт М.Я., Рыбко А.Н., Сухов Ю.М. Качественные методы теории сетей с очередями // Препринт. – М., 1986. – 50 с. – (ИППИ АН СССР). 9. Евдокимович В.Е., Малинковский Ю.В. Сети массового обслуживания с динамической маршрутизацией и динамическими вероятностными обходами узлов заявками // Проблемы передачи информации. – 2001. – Том 37, вып. 3. – С. 55–66. 10. Жожикашвили В.А., Вишневский В.М. Сети массового обслуживания. Теория и применение к сетям ЭВМ. – М.: Радио и связь. – 1988. – 192 с. 11. Ивницкий В.А. Сети массового обслуживания и их применение в ЭВМ // Зарубежная радиоэлектроника. – 1977. – №7. – С. 33–70. 12. Ивницкий В.А. Об условии независимости стационарных вероятностей состояний разомкнутой сети однолинейных систем с потерями от вида распределений длительностей обслуживания // Известия АН СССР. Техническая кибернетика. – 1981. – №4. – С. 136–140. 13. Ивницкий В.А. Об условии инвариантности стационарных вероятностей для сетей массового обслуживания // Теория вероятностей и ее применения. – 1982. – Т. 27, №1. – С. 188–192. 14. Ивницкий В.А. Об инвариантности стационарных вероятностей состояний для замкнутых сетей однолинейных СМО // ДАН УССР. А. – 1989. – №7. – С. 8–11. 15. Ивницкий В.А. Об условии инвариантности стационарных вероятностей состояний для сетей однолинейных СМО // Теория вероятностей и ее применения. – 1989. – Т. 34, №3. – С. 576–580. 16. Ивницкий В.А. Об инвариантности стационарных вероятностей состояний для сетей многолинейных систем массового обслуживания с абсолютным приоритетом поступающего требования и дообслуживанием // Исследование систем и сетей массового обслуживания: Тез. докл. 12‑й Бел. зимней школы-семинара по ТМО, Гродно, янв.-февр. 1996 г. / Бел. гос. унив. – Минск, 1996. – С. 36–37. |