Реферат: Элементы теории оптических резонаторов
Название: Элементы теории оптических резонаторов Раздел: Рефераты по физике Тип: реферат |
Элементы теории оптических резонаторов 1. Общие сведенияДадим сначала качественную терминологию. Резонатор (от лат. resono - звучу в ответ, откликаюсь) - устройство или природный объект, в котором происходит накопление энергии колебаний, поставляемой извне. Как правило, резонаторы относятся к линейным колебательным системам и характеризуются резонансными частотами. При приближении частоты внешнего воздействия к резонансной частоте в резонаторе наблюдается достаточно резкое увеличение амплитуды вынужденных колебаний. Это - явление резонанса. После отключения внешнего источника колебания внутри резонатора какое-то время сохраняются. Они совершаются на частотах, близких к резонансным, и представляют собой уже собственные или свободные колебания резонатора (моды). Если пренебречь диссипацией (в т. ч. потерями на излучение), то резонатор ведёт себя как идеальная консервативная колебательная система, обладающая дискретным спектром собственных колебаний. При наличии потерь чисто гармонические собственные колебания невозможны, соответствующие им резонансные кривые резонатора уширяются. Это уширение характеризуют добротностью Q = w/Dw (w - резонансная частота, Dw-ширина резонансной кривой). Добротность определяет отношение запасённой в резонаторе колебательной энергии W к энергии потерь за один период колебаний, Q = wW/P (P - мощность потерь); однако следует иметь в виду, что само понятие запасённой энергии в диссипативных системах является до некоторой степени условным, зависящим от принятой модели (идеализации) резонатора. Введем теперь некоторое формальное рассмотрение, а именно рассмотрим прямоугольную полость с идеально проводящими стенками, равномерно заполненную диэлектриком. Вычислим распределение стоячих электромагнитных волн, которое может существовать в этой полости. Согласно уравнениям Максвелла, напряженность электрического поля где k - постоянная величина. Второе уравнение имеет общее решение
где Рассмотрим теперь первое уравнение. Это есть уравнение Гельмгольца. Нетрудно убедиться, что ему удовлетворяют выражения для любых значений Однако сама мода еще полностью не определена, поскольку остаются произвольными Подсчитаем теперь число Поскольку величины где 2. Резонатор Фабри-ПероРезонатор Фабри-Перо состоит из двух плоских зеркал, расположенных параллельно друг другу. В первом приближении моды такого резонатора можно представить как суперпозицию двух плоских электромагнитных волн, распространяющихся в противоположных направлениях вдоль оси резонатора. В рамках этого приближения нетрудно получить резонансные частоты, если наложить условие, что длина резонатора L должна быть равна целому числу полуволн, т. е. Впервые плоскопараллельный резонатор (резонатор Фабри-Перо) рассмотрели Шавлов и Таунс, которые предложили распространить принцип действия мазера на оптический диапозон. Рассматривая эту задачу, они использовали аналогию с закрытым прямоугольным резонатором, моды которого хорошо известны. Напомним, что для прямоугольного резонатора составляющие напряженности электрического поля можно написать в виде а резонансные частоты даются выражением Заметим, что выражения для
т.е. как сумма восьми плоских волн, распространяющихся вдоль направлений, определяемых восемью волновыми векторами с компонентами , и . Следовательно, направляющие косинусы этих векторов равны , где - длина волны, соответствующая данной моде. Суперпозиция этих восьми плоских волн дает стоячую волну, определяемую выражениями для . Кроме того, Шавлов и Таунс высказали предположение о том, что моды открытого резонатора с хорошей точностью описываются теми модами прямоугольного резонатора, для которых ( l , m ) << n (открытый резонатор получается из закрытого путем удаления боковых стенок). Доказательством справедливости этого предположения является то, что моды рассматриваемого нами резонатора можно представить в виде суперпозиции плоских волн, распространяющихся под очень малыми углами к оси z . Следовательно, можно ожидать, что отсутствие боковой поверхности существенно не изменит эти моды. Однако на те моды, у которых значения l и m не малы по сравнению с n , отсутствие боковой поверхности окажет сильное влияние. После удаления боковых сторон резонатора дифракционные потери для этих мод становятся столь большими, что их не имеет смысла в дальнейшем рассматривать. Если ( l , m ) << n , то резонансные частоты плоскопараллельного резонатора можно найти из выражения для путем разложения его в степенной ряд: Таким образом, для каждого набора трех значений I
, m
и n
существует вполне определенная мода резонатора с вполне определенной резонансной частотой. Из последнего выражения можно сразу получить разность частот
Для типичных значений L
величины 3. Теория Фокса и ЛиАмериканские исследователи А. Фокс и Т. Ли первыми взялись за исследование оптического резонатора. Они отлично понимали, что расчеты оптического интерферометра Фабри - Перо, по существу не отличающегося от резонатора лазера, здесь непригодны. Дело в том, что применение интерферометра Фабри - Перо в классической оптике предусматривает освещение его извне световыми волнами, плоские фронты которых падают на интерферометр параллельно его зеркалам. В интерферометре возникает система стоячих плоских волн. Кроме того, в оптических интерферометрах поперечные размеры зеркал обычно превосходят расстояние между ними. В лазере ситуация полностью меняется. Энергия не поступает в его резонатор-интерферометр извне. Она выделяется внутри его. Причем процесс самовозбуждения лазера состоит в том, что случайно возникшая в нем слабая волна постепенно усиливается внутри резонатора в результате многочисленных пробегов от одного зеркала к другому и обратно. А расстояние между зеркалами много больше, чем их размеры. Фокc и Ли задались целью проследить за тем, что происходит со световой волной, бегающей между зеркалами. Для упрощения задачи они отказались на этой стадии от рассмотрения самой активной среды лазера и считали зеркала идеальными, то есть отражающими свет без потерь. Они решали эту задачу в т.н. скалярном приближении, нередко используемом в оптике. В этом приближении электромагнитное поле предполагается почти поперечным и однородно поляризованным (например, линейно или по кругу). Поле волны можно записать в виде скалярной величины U , представляющей амплитуду электрического (или магнитного) поля. Пусть U 1 - некоторое произвольное распределение поля на зеркале 1. Тогда из-за дифракции это распределение вызовет соответствующее распределение поля на зеркале 2, выражение для которого можно получить с помощью дифракционного интеграла Кирхгофа. При этом в произвольной точке P 2 зеркала 2 поле U 2 ( P 2 ) дается выражением, где - расстояние между точками P 1 и P 2 , - угол, который отрезок P 1 P 2 составляет с нормалью поверхности зеркала в точке P 1 , dS 1 - элемент поверхности в точке P 1 , интеграл вычисляется по всей поверхности зеркала 1. В этом выражении можно разглядеть принцип Гюйгенса: каждый элемент dS 1 можно рассматривать как источник сферической волны , причем поле на поверхности 2 обусловлено суперпозицией этих сферических волн. Угловой множитель - «коэффициент наклона», - нормирующий коэффициент, в частности имеет интересную физическую интерпретацию: испускаемая сферическая волна сдвинута по фазе на по сравнению с полем на поверхности 1. Вместо того чтобы изучать общее распределение U1 , рассмотрим распределение U , соответствующее моде резонатора. В этом случае распределение поля на зеркале 2, вычисленное по последней формуле, с точностью до некоторого постоянного множителя должно быть снова равно U . Таким образом, получаем следующее выражение: где В последнем выражении при L
>>
a
,
где мы разложили в ряд выражение, стоящее под знаком квадратного корня. При выполнении условия Используя это выражение и безразмерные параметры где Для зеркал квадратной или прямоугольной формы в последнем уравнении можно разделить переменные Можно показать, что функция
Замечательно, насколько постановка задачи Фокса и Ли совпадает со старым подходом Гюйгенса: между зеркалами бегает световой импульс, волновая сущность света отступает на второй план. Естественно, что их расчет основан на простейшей математической формулировке принципа Гюйгенса. Дальше они применяют известный интеграл Френеля и... приходят к сложным интегральным уравнениям. Решений этих уравнений нет ни в одной книге по математике, ни в одном математическом журнале. Живи Фокс и Ли во времена Френеля, это было бы тупиком. Но шло шестое десятилетие нашего века, и они обратились к помощи вычислительной машины. Машине предложили несколько вариантов задачи - плоские зеркала в виде круглых дисков или в виде узких полос и вогнутые зеркала с различным фокусным расстоянием. Машина IBM-704 шаг за шагом проследила за тем, как деформируется волна по мере увеличения числа проходов, и показала, что через несколько сот таких прохождений форма волны практически перестает изменяться. Далее машина уточнила, что оптический резонатор выделяет из всего мыслимого разнообразия волн лишь определенный набор, соответствующий частотам, характерным для данного резонатора. Машина выдала свой ответ в виде численных таблиц и графиков. Но ученые мирятся с такими ответами только за неимением более удобных ответов, имеющих вид известных математических функций. Ученые привыкли к функциям в результате трехвековой тренировки, передаваемой от учителя к ученику, от поколения к поколению. Не удивительно, что они стремились найти подобное решение и для этой задачи. 4. Конфокальный резонаторРассмотрим резонатор длиной L
, одну зеркальную поверхность будем описывать в системе координат (
x1
,
y1
),
а другую - в системе координат (
x2
,
y2
).
В рамках скалярного приближения собственные решения даются выражением (*). При L>>
a
, где Эти уравнения имеют конечный набор собственных решений где Следует заметить, что в общем случае индексы m
и l
равны числу нулей поля (за исключением нулей при Резонансные частоты удовлетворяют условию Рассмотрим теперь дифракционные потери в резонаторе. Если воспользоваться выражением для , то , т.е дифракционные потери отсутствуют. Но это - следствие того, что . Т.е., чтобы рассмотрение собственных значений имело смысл, в последних интегральных уравнениях необходимо считать N
конечной величиной; иными словами нужно рассмотреть радиальные сфероидальные функции Фламмера. Оказывается, что для данного числа Френеля дифракционные потери в конфокальном резонаторе значительно меньше, чем в резонаторе с плоскими зеркалами. Это нетрудно понять, если заметить, что благодаря фокусирующему действию сферических зеркал поле в конфокальном резонаторе сосредотачивается главным образом вдоль оси резонатора. Если известно распределение поля на зеркалах, то поле в любой точке внутри резонатора можно получить, используя опять интеграл Френеля-Кирхгофа. В предельном случае где Заметим, что первые четыре множителя Рассмотрим теперь продольный фазовый множитель. Вначале отметим, что Наконец, рассмотрим поперечный фазовый множитель. Наличие этого множителя говорит о том, что плоскости z=
const
не являются поверхностями постоянной фазы, т.е. волновые фронты не являются плоскими. Оказывается, что эквифазная поверхность представляет собой параболоид вращения. Радиус кривизны этого параболоида в точке z=
z0
в точности равен R
. Заметим, что при z=0
(центр резонатора) 5. Гауссовы пучкиПрежде, чем говорить о гауссовом пучке, поясним суть матричной формулировки геометрической оптики. Рассмотрим луч света, который проходит через оптический элемент (линза, зеркало, их системы). Лучевой вектор r1
на данной входной плоскости z=
z1
оптического элемента можно описать двумя параметрами: его радиальным смещением r1
от оси z
и угловым смещением или в матричном виде где матрица ABCD полностью характеризует данный оптический элемент в приближении параксиальных лучей. Итак, сначала рассмотрим свободное распространение однородной сферической волны из точечного источника Р , расположенного в точке z=0. Поле U( P1 ), создаваемое этой волной в точке P1 с цилиндрическими координатами r и z0 , в случае r<< R записывается в виде где R - радиус кривизны сферической волны в точкеP1 . Отсюда мы видим, что поперечное изменение фазы пучка, а именно должно описываться сферической волной радиусом R. Рассмотрим теперь свободное распространение гауссова пучка l=
m=0
(см. пред. пункт). Подставив выражение для Для данной длины волны Распространение гауссова пучка можно описать в более простой и удобной форме, если определить комплексный параметр q
следующим образом: где Параметр q называется комплексным радиусом кривизны гауссова пучка или, что более привычно, комплексным параметром пучка. Действительно, в соответствии с выражением для U( x, y, z) (см. пред. пункт) поперечное изменение фазы пучка можно записать как что совпадает с аналогичной записью в случае сферической волны, причем радиус кривизны сферической волны R заменяется параметром q . Параметр q обеспечивает весьма удобный способ описания распространения гауссова пучка, как видно, например, из очень простого вида закона распространения пучка, записанного через параметр q. Это удобство связано также и со следующим общим результатом: если гауссов пучок на входе некоторой оптической системы, описываемой данной ABCD- матрицей, характеризуется комплексным параметром q1 , то на выходе этой системы параметр пучка q2 запишется весьма просто: Этот закон обычно называют правилом ABCD или ABCD -законом распространения гауссова пучка. 6. Добротность резонатораРассмотрим для простоты плоскопараллельный резонатор. В этом случае, исходя из приведенного выше рассмотрения, каждую моду резонатора можно представить себе как суперпозицию двух волн, распространяющихся в противоположных направлениях. Пусть I0 - начальная интенсивность одной из этих волн. Если R1 и R2 - коэффициенты отражения (по мощности) 2-х зеркал, а Ti - относительные внутренние потери за проход вследствие дифракции, то интенсивность I( t1 ) в момент времени t=2 L/ c, т.е. после одного полного прохода резонатора, запишется в виде Интенсивность после m полных проходов, т. е. в момент времени tm =2 mL/ c, равна Если q(
t) -
полное число фотонов в резонаторе в момент времени t
, то, разумеется, оно пропорционально интенсивности, т.е. Если теперь предположить, что последнее соотношение для При условии, что последнее выражение справедливо, временную зависимость электрического поля в произвольной точке внутри или вне резонатора можно представить в виде С помощью Фурье-преобразования этого выражения нетрудно показать, что спектр мощности излучения имеет лоренцеву форму линии с полушириной (полная ширина на половине максимального значения): Рассмотрев время жизни фотона в резонаторе, определим теперь понятие добротности резонатора и найдем связь этой величины с временем жизни фотона. Для любой резонансной системы, и в частности для резонирующей полости, добротность определяют как Q=2π∙
(Запасенная энергия) /(Энергия, теряемая за один цикл колебания). Таким образом, высокая добротность резонатора означает, что резонансная система имеет малые потери. Поскольку в нашем случае запасенная энергия равна
При этом из последнего выражения для Таким образом, добротность резонатора равна отношению резонансной частоты Литература1. О. Звелто. Принципы лазеров. Москва, «Мир», 1990. 2. И. Радунская. Крушение парадоксов. «Молодая гвардия», 1971. 3. www.femto.com.ua |