Курсовая работа: Проектирование элементов систем электроснабжения сельского хозяйства
Название: Проектирование элементов систем электроснабжения сельского хозяйства Раздел: Рефераты по физике Тип: курсовая работа | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Аннотация Курсовой проект выполнен в объеме: расчетно-пояснительная записка на 38 листов формата А4, лист с индивидуальным заданием, 18 таблиц, 5 рисунков, 2 листа формата А1 с выполненной на них графической частью проекта. Ключевые слова: электроснабжение; трансформатор; мощность; напряжение; нагрузка; потери; надбавки; регулировочное ответвление; послеаварийный режим. В данном курсовом проекте был осуществлен расчет и проектирование Высоковольтной линии-110 кВ для электроснабжения сельского хозяйства. Содержание Исходные данные к проектированию 1.1 Составление схемы сети 110 кВ 1.2 Выбор числа и мощности трансформаторов ТП 1.3 Приведение нагрузок к высшему напряжению 1.4 Расчет сложнозамкнутой сети 110 кВ 1.5 Выбор сечений проводов участков линии 110 кВ 1.7 Определение потерь в узлах с учетом потерь мощности 1.8 Выбор надбавок (ответвлений) трансформатора 1.9 Расчет послеаварийного режима 1.10 Анализ и заключение по результатам электрического расчета режимов работы сети 2. Механический расчет воздушной линии 110 кВ 2.1 Выбор материала и типа опор ВЛ-110 кВ 2.2 Определение удельных нагрузок на провода 2.3 Определение критических пролетов 2.4 Систематический расчет проводов и тросов 2.5 Расчет монтажных стрел провеса ВведениеВ данном курсовом проекте был осуществлен расчет и проектирование ВЛ-110 кВ для электроснабжения сельского хозяйства. В ходе расчета был произведен выбор числа и мощности трансформаторов; составление схемы замещения; выбор сечения проводов линии 110 кВ ; определение напряжения; расчет послеаварийного режима; выбор материала и типа опор ВЛ; определение критических пролетов; расчет монтажных стрел провеса. Данное курсовое проектирование имеет цель ознакомления с основными приемами и методами проектирования элементов систем электроснабжения сельского хозяйства, проявления навыков самостоятельной работы с технической литературой и нормативными документами, дает возможность проявить самостоятельность в выборе решений, связанных с оптимизацией параметров сети. Исходные данные к проектированиюВариант № 24: Напряжение на шинах опорного узла А: 119 кВ . Номер линии в аварийном состоянии: Климатические условия: район по ветру: район по гололеду: температура: высшая: средняя: низшая: Время использования максимальной нагрузки: Длины участков:
Мощность потребителя (МВ × А ) /соs: ТП1: 1.1 Составление схемы сети 110 кВ
Составляем расчетную схему трансформаторных подстанций с учетом варианта: Рис.1. Схема сети с опорным узлом А. 1.2 Выбор числа и мощности трансформаторов ТППринимаем по умолчанию II категорию потребителей, терпящих перерывы в электроснабжении. Соответственно, на подстанциях устанавливаем по одному трансформатору. Его мощность выбираем с учетом длительно допустимой 30% перегрузки. Трансформаторы выбираем по каталожным данным [1,2,3] с учетом заданной мощности потребителей и уровня номинального напряжения. Сведения заносим в таблицу: Таблица 1. Технические данные выбранных трансформаторов
1.3 Приведение нагрузок к высшему напряжениюНагрузка электрической сети задана на шинах низшего напряжения ТП. Вместе с тем, нагрузка высшего напряжения больше заданной нагрузки на величину потерь мощности в трансформаторах. Кроме того, необходимо учитывать тот факт, что линия обладает зарядной мощностью, которая уменьшает общую реактивную нагрузку сети. Приводим заданные нагрузки к высшему напряжению, используя формулу:
где вторичной стороне ТП;
торов данной ТП;
подключения данной нагрузки (ТП). Зарядную мощность определяем, (Мвар ):
где
Так как, зарядная мощность распространяется по всей длине линии, то принято схематично распределять ее в начале и в конце линии. Поэтому, полученное
1.4 Расчет сложнозамкнутой сети 110 кВДля расчета необходимо составить схему замещения электрической сети, в которой - направление мощности становится произвольно, определяется число независимых контуров. Расчет такой сети ведут в 2 этапа: определяют потокораспределение на участках без учета потерь мощности; рассчитывают потери мощности, потокораспределение по участкам с учетом потерь мощности и направление в точках сети. 1
6 5 Рис. 2. Схема электрической сложнозамкнутой сети. Определяем число независимых контуров и задаемся неизвестными мощностями, согласно числу контуров: Для узла 6: Для узла 3: Аналогично для остальных узлов. Таблица 2. Выраженные мощности участков
Выполним проверку правильности вычисления: сумма всех мощностей должна быть равна мощности источника (точка
Для нахождения Для по
по Для по
по
Получаем две системы уравнений:
Перегруппируем системы для дальнейшего их решения:
Решая данные системы находим соответственно: Подставляем в таблицу 2 вместо Таблица 3. Численные значения выражений мощностей участков
1.5 Выбор сечений проводов участков линии 110 кВЗная мощности участков линий, определяем полную мощность и ток, протекающий по ним, а полученные данные сводим в таблицу 4. Расчет производим по следующим формулам:
Таблица 4. Расчетные данные
Выбор сечения проводов линии 110 кВ проводится с учетом ряда факторов, например, технико-экономическое сравнение различных вариантов капиталовложений, т.е. сечения проводов должны соответствовать оптимальному соотношению между капитальными затратами на сооружение линий, которые растут с увеличением сечения провода, и расходами, связанными с потерями энергии, уменьшающимися при увеличении сечений проводов. Немаловажным показателем является механическая прочность проводов воздушных линий, а также условия образования короны. Однако для упрощенных решений этой задачи, согласно ПУЭ, можно выбрать сечения проводов, используя расчеты методом экономической плотности тока [5].
где Расчетные сечения, номинальные значения сечений (с учетом минимальных допустимых значений по механической прочности) и другие технические данные проводов по участкам сводится в таблицу 5. Расчет Таблица 5. Технические данные проводов участков линии
1.6 Определение токораспределения по участкам с учетом сопротивлений выбранных проводов без учета потерь мощностиДля выполнения данного пункта задания необходимо рассмотреть два контура и решить уравнения:
Для решения представим нашу схему сети 110 кВ (рис.2) в виде схемы замещения: 8,56 8,88
7,85 10,70 3,08 8,99 11,10 9,32 17,12 3,96 17,76 8,40 3,06 4,34 3. Схема замещения сети 110 кВ . Таблица 6. Выраженные мощности участков
Составляем уравнения для первого контура: Составляем уравнения для второго контура: Решив полученную систему находим:
Подставляя полученные значения в выраженные мощности участков, производим перерасчет сечений проводов, с учетом сопротивлений выбранных ранее проводов. Таблица 7. Численные значения выражений мощностей участков
Зная мощности участков линий, определяем полную мощность и ток, протекающий по ним, а полученные данные сводим в таблицу 8. Таблица 8. Расчетные данные
Согласно пересчитанному току на каждом из участков производим повторный выбор сечений проводов с учетом сопротивлений на данном участке. Следовательно, заполняем повторно таблицу с техническими данными проводов участков линий. Таблица 9. Технические данные проводов участков линии
1.7 Определение потерь в узлах с учетом потерь мощностиДля определения потери мощности на участках используем формулу:
где
Тогда мощность в начале участка А-6 будет: Для определения мощности в начале участка 6-5 используем I закон Кирхгофа:
Аналогичным образом находим мощности в начале и конце каждого из участков, а также потери мощности на данных участках. Полученные данные сводим в таблицу 10. Таблица 10. Рассчитанные значения мощностей в начале и в конце линий, потери мощности на участках
Для определения напряжений в узлах сети в качестве отправной точки используем напряжение опорного узла А:
Здесь
1.8 Выбор надбавок (ответвлений) трансформатораНапряжение на шинах низшего напряжения ПС, приведенное к стороне высшего напряжения, можно получить, если из напряжения вычесть падение напряжения в трансформаторе (также без учета поперечной составляющей падения напряжения):
где
Определяем желаемое (расчетное) напряжение регулировочного ответвления обмотки высшего напряжения трансформатора:
где
Ведем расчет для режима наибольших нагрузок:
Согласно полученным значениям
Определим действительное напряжение на шинах низшего напряжения подстанции:
Для сети 10 кВ в режиме наибольших нагрузок и в послеаварийных режимах должно поддерживаться напряжение не менее 10,5 кВ , а в режиме наименьших нагрузок - не более 10 кВ . Допускается для сети 10 кВ , если в послеаварийных режимах невозможно обеспечить напряжение 10,5 кВ , другой уровень напряжения, но не ниже 10 кВ . Согласно данному условию проверяем теперь и в последующем соблюдение его для В данном случае, в режиме наибольших нагрузок, данное условие соблюдается полностью. Ведем расчет для режима наименьших нагрузок с учетом того, что напряжение
Определяем желаемое (расчетное) напряжение регулировочного ответвления обмотки высшего напряжения трансформатора в режиме наименьших нагрузок:
Согласно полученным значениям
Определим действительное напряжение на шинах низшего напряжения подстанции:
В режиме наименьших нагрузок действительное напряжение 1.9 Расчет послеаварийного режимаВ соответствии с заданием создается аварийная ситуация, когда одна из линий выходит из строя. Расчет в послеаварийном режиме выполняется аналогично, как и в режиме нормальных нагрузок. Для расчета составляется схема замещения с нанесением исходных данных.
8,56 8,88 7,85 10,70
17,76 3,96 8,40 3,06 4,34 17,12 Рис.4. Схема замещения сети 110 кВ в послеаварийном режиме. Необходимо произвести перерасчет токораспределения по участкам с учетом сопротивлений выбранных проводов без учета потерь мощности. Таким образом, необходимо рассмотреть один контур и решить для него систему уравнений:
Выразим мощности на участках с учетом разрыва линии 1-5. Таблица 11. Выраженные мощности участков
Решив полученную систему находим: Подставляя полученные значения в выраженные мощности участков, производим перерасчет сечений проводов, с учетом сопротивлений выбранных ранее проводов в послеаварийном режиме. Таблица 12. Численные значения выражений мощностей участков линии в послеаварийном режиме
Зная мощности участков линий, определяем полную мощность и ток, протекающий по ним в послеаварийном режиме линии, а полученные данные сводим в таблицу 13. Таблица 13. Расчетные данные
Согласно пересчитанному току на каждом из участков рассчитываем сечения провода в послеаварийном режиме, но этот расчет никак не будет влиять на выбранные при нормальном режиме нормированные сечения проводов. Таким образом, заполняем таблицу с техническими данными проводов оставляя выбранные ранее нормированные значения сечений проводов. Таблица 14. Технические данные проводов участков линии
Определяем потери в узлах с учетом потерь мощности для послеаварийного режима.
Тогда мощность в начале участка А-6 будет;
Для определения мощности в начале участка 6-5 используем I закон Кирхгофа:
Аналогичным образом находим мощности в начале и конце каждого из участков, а также потери мощности на данных участках. Полученные данные сводим в таблицу 15. Таблица 15. Рассчитанные значения мощностей в начале и в конце линий, потери мощности на участках
Определяем напряжения в узлах сети, исходя из того, что
Рассчитываем напряжение на шинах низшего напряжения ПС, приведенное к стороне высшего напряжения,
Определяем желаемое (расчетное) напряжение регулировочного ответвления обмотки высшего напряжения трансформатора для послеаварийного режима:
Согласно полученным значениям
Определим действительное напряжение на шинах низшего напряжения подстанции:
В послеаварийном режиме действительное напряжение 1.10 Анализ и заключение по результатам электрического расчета режимов работы сетиПолученные результаты расчетов в нормальных и послеаварийных режимах сводим в таблицу 16: Таблица 16. Результаты расчетов различных режимов линии
2. Механический расчет воздушной линии 110 кВПроектирование линий электропередачи ведется согласно схеме развития электрической системы. Для механического расчета выбранных сечений проводов, определения допустимых пролетов ВЛ необходимо знать климатические условия: толщину стенки гололеда, максимальную скорость ветра, высшую, низшую и среднегодовую температуру. С целью сокращения объема курсового проекта, механический расчет ВЛ-110 кВ выполняется для линии, соединяющей две узловые точки (1-5). 2.1 Выбор материала и типа опор ВЛ-110 кВОпоры воздушных линий поддерживают провода на необходимом расстоянии от поверхности земли, проводов других линий, крыш зданий и т.п. Опоры должны быть достаточно механически прочными в различных метеорологических условиях (ветер, гололед и пр). Рис.5. Промежуточная двухцепная опора ВЛ 110 кВ В качестве материала для опор на сельских линиях широко применяют древесину деревьев хвойных пород, в первую очередь сосны и лиственницы, а затем пихты и ели (для линий напряжением 35 кВ и ниже). Для траверс и приставок опор ель и пихту применять нельзя. Все большее распространение получают железобетонные опоры, изготавливаемые на специальных предприятиях. для напряжений не более 35 кВ линии изготавливают на вибрированных стойках, на двухцепных линиях (рис.5) 35 и 110 кВ - также на центрифугированных стойках. Их срок службы в среднем в два раза выше, чем на деревянных, хорошо пропитанных опорах. Отпадает необходимость в использовании древесины, повышается надежность электроснабжения. Железобетонные конструкции обладают высокой механической прочностью и долговечностью, но недостатком их является большая масса. Отсутствие высокопрочных сталей и бетона соответствующих марок долгое время не позволяло применять железобетонные опоры в строительстве высоковольтных линий, для которого транспортабельность конструкции играет решающую роль. Таким образом, принимаем к установке железобетонные двухцепные опоры. 2.2 Определение удельных нагрузок на проводаУдельные нагрузки, т.е. нагрузки, возникающие в 1 м длины линии и 1 мм2 сечения провода от веса провода, гололеда и давления ветра, рассчитывают исходя из условия: нагрузка по длине провода в пролете распределяется равномерно; порывы ветра отсутствуют. По начальным условиям из справочной литературы [1,2,5] выписываем все необходимые данные (для провода АС 70/11): скорость напора ветра: толщина стенки гололеда: модуль упругости: температурный коэффициент линейного удлинения: предельная нагрузка: суммарная площадь поперечного сечения: диаметр провода: масса провода: напряжение при наибольшей нагрузке и низшей температуре: напряжение при среднегодовой температуре: Рассчитываем нагрузку от собственной массы провода:
где Нагрузка от массы гололеда с учетом условия, что гололедные отложения имеют цилиндрическую форму плотностью
Нагрузка от собственной массы и массы гололеда:
Нагрузка от давления ветра при отсутствии гололеда:
где
ветра по длине пролета;
Нагрузка от давления ветра при наличии гололеда:
здесь Суммарная нагрузка от собственной массы проводов и от давления ветра (при отсутствии с гололеда):
Суммарная нагрузка от собственной массы провода, от гололеда и давления ветра:
2.3 Определение критических пролетовДля каждой марки провода существует предел прочности. У проводов и тросов ВЛ должен быть определенный запас механической прочности. При выборе его величины необходимо учитывать погрешности в заданных температурах и нагрузок, а также изменения ряда допущений. Поэтому должен быть запас прочности, согласно ПУЭ, в виде допустимых напряжений, в проводах в процентах от предела прочности провода Ограничения напряжений при наибольшей нагрузке ( Влияния изменений нагрузки и температуры проявляются в большей или меньшей степени в зависимости от длины пролета. При малых пролетах на напряжение в проводе значительное влияние оказывает температура, при больших пролетах - нагрузка. Граничный пролет, при котором влияние температуры и нагрузки на напряжение в проводе оказывается равноопасным, называется критическим. При ограничении напряжения в проводе по трем режимам в общем случае существуют три критических пролета. Первый критический пролет
- это пролет такой длины, при котором напряжение в проводе в режиме среднегодовой температуры равно допустимому при среднегодовой температуре
где
температур.
Второй критический пролет
- это пролет, при котором напряжение в проводе при наибольшей нагрузке равно допустимому напряжению при наибольшей нагрузке
где
Третий критический пролет
- это пролет, при котором напряжение при среднегодовой температуре достигает допустимого при среднегодовой температуре
2.4 Систематический расчет проводов и тросовЦель систематического расчета заключается в построении зависимостей изменения напряжения в проводе от длины пролета В ходе предыдущего расчета было получено соотношение: Напряжение в проводе определяется из уравнения состояния провода:
где
Стрела провеса для каждого из сочетаний климатических условий определяется по формуле:
Расчетный режим № 3:
Для построения зависимости Тогда уравнение примет вид:
Методом подбора определим неизвестное
Тогда стрела провеса в данном случае:
Далее расчет проводится аналогичным образом через каждые 60 м до 400 м . Расчетный режим № 5:
Далее расчет проводится аналогичным образом через каждые 60 м до 400 м . Результаты расчетов режимов 3 и 5 сводим в таблицу: Таблица 17. Результаты расчетов режимов № 3 и № 5
2.5 Расчет монтажных стрел провесаРасчет проводим для пролета Расчетный режим № 5. Исходные данные для расчета:
Напряжение в проводе:
Расчет проводим для диапазона температур от -30 до +30 Определяем также стрелу провеса:
Определяем натяжение провода по формуле:
Далее расчет проводится аналогичным образом через каждые 10 Полученные результаты сводим в таблицу 18: Таблица 18. Результаты расчета монтажных стрел провеса
По полученным данным строятся характеристики Литература1. Поспелов Г.Е., Федин В.Т. Электрические системы и сети. Проектирование: Учебное пособие для ВТУзов. - 2-е изд., исправленное и доработанное - Мн.: Высш. шк., 1988. - 308 с. 2. Лычев П.В., Федин В.Т., Электрические системы и сети. Решение практических задач. Учебное пособие для ВУЗов. - Мн.: ДизайнПРО, 1997. - 192 с. 3. Блок В.М. Электрические сети и системы: Учебное пособие для электроэнергетических спец. ВУЗов. - М.: Высш. шк., 1986. - 430 с. 4. Будзко И.А., Зуль Н.М. Электроснабжение сельского хозяйства. - М.: Агропромиздат, 1990. - 496 с. 5. Правила устройства электроустановок/Минэнерго СССР. - 6-е изд. перераб. и доп. - М.: Энергоатомиздат, 1986. - 648 с. 6. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей ВУЗов. - 2-е изд., перераб. и доп. / В.М. Блок, Г.К. Обушев, Л.Б. Паперно и др.; Под редакцией В.М. Блок. - М.: Высш. шк., 1990. - 383 с. 7. Проектирование ВЛ-110 кВ для электроснабжения сельского хозяйства. Методическое указание к курсовому проекту. / В.П. Счастный. - Мн.: Ротапринт БАТУ, 1999. - 35 с. |