Реферат: Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.5
Название: Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.5 Раздел: Рефераты по астрономии Тип: реферат |
Задача 5. Найти производную. 5.1. (9x2 +8x-1)(x+1)1/2 – (3x3 +4x2 -x-2) y'=2/15* ___________________2(1+x)1/2 = 1+x = 2/15* (2x+2)(9x2 +8x-1)-3x3 -4x2 +x+2 = 2(x+1)3/2 =2/15* 18x3 +16x2 -2x+18x2 +16x-2-3x3 -4x2 +x+2 = 2(x+1)3/2 = 2/15* 15x3 +30x2 +15x = 2(x+1)3/2 = x(x+1)2 = x(x+1)1/2 (x+1)3/2 5.2. 3x3 *4x(x2 +1)1/2 +x(2x2 -1) -9x2 (2x2 -1)(x2 +1)1/2 y'= (x2 +1)1/2 = 9x6 = 12x4 (x2 +1)+3x4 (2x2 -1)-9x2 (2x2 -1)(1+x2 ) = 9x6 (x2 +1)1/2 = 12x4 +12x6 +6x6 -3x4 -18x4 -18x6 +9x2 +9x4 = 9x6 (x2 +1)1/2 = 9x2 = 1 . 9x6 (x2 +1)1/2 x4 (x2 +1)1/2 5.3. y'= (4x3 -16x)(x2 -4)-(x4 -8x2 )2x = 4x5 -16x3 -16x3 +64x-2x5 +16x3 = 2(x2 -4)2 2(x2 -4)2 =2x5 -16x3 +64x =x(x2 -4)2 +16x = x+ 16x2 . 2(x2 -4)2 (x2 -4)2 (x2 -4)2 5.4. (4x-1)√(2+4x) – 2(2x2 -x-1) y'= √(2+4x) = (4x-1)(2+4x)-4x2 +x+1 = 3(2+4x) 3(2+4x)√(2+4x) = 12x2 +5x-1 . 3(2+4x)√(2+4x) 5. 5. 8x19 √(1+x8 )+ 4x19 (1+x8 ) – 12x11 (1+x8 )3/2 y'= √(1+x8 ) = 12x24 = 12x19 (1+x8 )-12x11 (1+x8 )2 = 12x24 √(1+x8 ) = x 11( x 16-2 x 8+1) = ( x 8-1)2 . x24 √(1+x8 ) x13 √(1+x8 ) 5.6. 2x√(1-3x4 ) + 6 x 5 y'= √(1-3 x 4 ) = 2 x (1-3 x 4 )+6 x 5 = x . 2(1-3x4 ) 2(1-3x4 )√(1-3x4 ) √(1-3x4 )3 5.7. y= (2x(4+x2 )√(4+x2 )+3/2√(4+x2 )*2x)x5 -(x2 -6)(4+x2 )√(4+x2 )*5x4 = 120x10 = √(4+x2 )(8x6 +2x8 +3x6 -20x6 -5x8 +30x6 +120x4 ) = 120x10 = √(4+x2 )(7x2 -x4 +40) 40x6 5.8. y= 3/2√(x2 -8)*2x4 -(x2 -8)√(x2 -8)*18x2 = 6x6 √(x2 -8)(x4 -6x4 +48x2 ) = √(x2 -8)(48-5x2 ) 3x6 3x4 5.9. 9x3 (2+x3 )2/3 -(4+3x3 )((2+x3 )2/3 +2/3* 3x3 ) y'= (2+x3 )1/3 = x2 (2+x3 )4/3 = 9x3 (2+x3 )-(4+3x3 )(2+3x3 ) = 8 . x2 (2+x3 )5/3 x2 (2+x3 )5/3
5.10. y'= √(x)*(2(1+x3/4 )*3/4x5/4 -(1+x3/4 )2 *3/2*√(x)) = 3(1+x3/4 )2/3 *x6/4 = √(x)(x3/2 -1) 2x(1+x3/2 )2/3 5.11. (6x5 +3x2 )√(1-x3 ) + 3x2 (x6 +x3 -2) y' = 2√(1-x3 ) = 1-x3 =(2-2x3 )(6x5 +3x2 )+3x8 +3x5 -6x2 = (9x5 -9x8 ) = 9x5 . 2(1-x3 )3/2 2(1-x3 )3/2 2√(1-x3 ) 5.12. 2x4 √(4+x2 )+ x4 (x2 -2) -3x2 (x2 -2)√(4+x2 ) y'= √(4+x2 ) = 24x6 = 2x4 (4+x2 )+x4 (x2 -2)-3x2 (x2 -2)(4+x2 ) = 1 24x6 x4 5.13. 2x√(1+2x2 )- 2x(1+x2 ) y'= √(1+2x2 ) = x(1+2x2 )-x(1+x2 ) = x3 . 2(1+2x2 ) (1+2x2 )3/2 (1+2x2 )3/2 5.14. y'= ((3x+2)/(2√(x-1))+3√(x-1))x2 -2x√(3x+2) = 4x4 = x2 (3x+2)+6x2 (x-1)-4x(x-1)(3x+2) = 9x3 -12x2 +8x = 9x2 -12x+8 4x2 √(x-1) 4x2 √(x-1) 4x√(x-1) 5.15. y'= 3/2*√(1+x2 )*2x4 -3x2 (1+x2 )3/2 = √(1+x2 )*(x4 -x2 -x4 ) = -√(1+x2 ) 3x6 x6 x4 5.16. (6x5 +24x2 )√(8-x3 )+3x2 (x6 +8x3 -128) y'= 2√(8-x3 ) = 8-x3 = (16-2x3 )(6x5 +24x2 )+3x2 (x6 +8x3 -128) = 72x5 -9x8 = 9x5 2(8-x3 )3/2 2(8-x3 )3/2 2√(8-x3 ) 5.17. x2 (x-2) +x2 √(2x+3)-(2x2 -4x)√(2x+3) y'= √(2x+3) = x4 = x2 (x-2+2x+3)-(2x2 -4x)(2x+3) = 3x2 -x3 +12x = 3x-x2 +12 x4 √(2x+3) x4 √(2x+3) x3 √(2x+3) 5.18. y'=-2x5 √(x3 +1/x)+(1-x2 )*1/5*(x3 +1/x)4/5 *(3x2 -1/x2 )=1/5*(x3 +1/x)4/5 (3x2 -1/x2 -3x4 +1)-2x(x3 +1/x)1/5 5.19. 4x4 √(x2 -3)+x4 (2x2 +3) - 3x2 (2x2 +3)√(x2 -3) y' = √(x2 -3) = 9x6 = 4x4 (x2 -3)+x4 (2x2 +3)-3x2 (2x2 +3)(x2 -3) = 27x2 = 3 . 9x6 √(x2 -3) 9x6 √(x2 -3) x4 √(x2 -3) 5.20. y'= (x2 +5)3/2 -3/2*(x-1)√(x2 +5)*2x = √(x2 +5)(5+3x-2x2 ) (x2 +5)3 (x2 +5)3 5.21. 2x2 √(x2 -x)+(2x-1)(2x+1)x2 -2x(2x+1)√(x2 -x) y'= √(x2 -x) = x4 = x2 (2x2 -2x+4x2 -1)-(4x2 +2x)(x2 -x) = 2x2 +1 x4 x2 5.22. _ 1+√x _ 1-√x y' = √((1+√x)/(1-√x))* 2√x 2√x = (1+√x)2 = -2√((1+√x)/(1-√x)) = -1 . 2√x(1+√x)2 √(x(1-x))(1+√x) 5.23. √(x2 +4x+5) - x(x+2) y' = √(x2 +4x+5) = - 2x2 -6x-5 . (x+2)2(x2 +4x+5) (x+2)2(x2 +4x+5)3/2 5.24. 2x+1 -3(x2 +x+1)1/3 y' = (x2 +x+1)2/3 = -3x2 -x-2 . (x+1)2 (x+1)2 (x2 +x+1)2/3 5.25. y'= 3√((x-1)4 /(x+1)2 )*(x-1)2 -2(x-1)(x+1) = -3√((x-1)4 /(x+1)2 )*x2 +2x-3 = (x-1)4 (x-1)4 = 3-x2 -2x (x2-1)2/3 (x-1)2 5.26. √(x2 +2x+7)-(x+1)(x-1) y' = √(x2 +2x+7) = x2 +2x+7-x2 -8x-7 = -x . 6(x2 +2x+7) 6(x2 +2x+7)3/2 (x2 +2x+7)3/2 5.27. y' = (x2 +x+1)(√(x+1)+x/(2√(x+1)))-(2x2 +x)√(x+1) = (x2 +x+1)2 = (3x+2)(x2 +x+1)-(4x2 +2x)(x+1) = -x3 -x2 +3x+2 2(x2 +x+1)√(x+1) 2(x2 +x+1)√(x+1) 5.28. y' = 2x√(1-x4 )+2x(x2 +2)/√(1-x4 ) = 3x-x5 +x3 2-2x4 (1-x4 )3/2 5.29. y' = (√(2x-1)+(x+3)/√(2x-1))(2x+7)-(2x+6)√(2x-1) = (2x+7)2 = (3x+2)(2x+7)-(2x+6)(2x-1) = 2x2 +15x+20 (2x+7)2 √(2x-1) (2x+7)2 √(2x-1) 5.30. y' = (3+1/(2√x))√(x2+2)-(3x+√x)x/√(x2 +2) = x2 +2 = (6√x+1)(x2 +2)-2x√x(3x+√x) = 12√x+2-x2 2√x(x2 +2)3/2 2√x(x2 +2)3/2 5.31. y' = (18x5 +16x3 -2x)√(1+x2 )-x(3x6 +4x4 -x2 -3)/√(1+x2 ) = 16x7 +14x5 +16x4 +15x3 15+15x2 15(1+x2 )3/2 |