Реферат: Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.6
Название: Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.6 Раздел: Рефераты по астрономии Тип: реферат |
Задача 6 . Найти производную. 6.1. ex + 2 e 2 x + e x y' = 1- √( e 2 x + e x +1) = 2+ e x +√( e 2 x + e x +1)- e x √( e 2 x + e x +1)-2 e 2 x - e x = 2+ex +2√(e2x +ex +1) 2+ex +2√(e2x +ex +1) = (2-e x )√(e 2x +e x +1)+2+e x -2e x 2+ex +2√(e2x +ex +1) 6.2. y' = 1/4*e2x (2-sin2x-cos2x)+1/8*e2x (-2cos2x+2sin2x)=1/8*e2x (4-2sin2x-2cos2x-2cos2x+2sin2x)=1/8*e2x (4-4cos2x)=e2x *sin2x 6.3. y' = 1 * 1 * 2e x = e x . 2 1 + (e x -3) 2 4 e2x -6ex +10 4 6.4. y' = 1 * 1-2 x * -2 x ln2(1+2 x )-(1-2 x )2 x ln2 = (2 x -1)2 x ln4 = 2 x (2 x -1) ln4 1+2x (1+2x )2 ln4(1+2x )3 (1+2x )3 6.5. e x (√(e x +1)+1) _ e x (√(e x +1)-1) y' = e x + √(e x +1)+1 * 2√(e x +1) 2√(e x +1) = √(ex +1) √(ex +1)-1 (√(ex +1)+1)2 = e x + e x √(e x +1)+e x -e x √(e x +1)+e x = √(ex +1) √(ex +1) 2ex √(ex +1) 6.6. y' = 2/3*3/2*√(arctgex ) * e x = e x √(arctge x ) 1+ex 1+ex 6.7. y' = 2e x - 2e x = e x 2(e2x +1) 1+e2x 1+e2x 6.8. 6.9. y' = 2/ln2*((2x ln2)/(2√(2x -1))-(2x ln2)/(1+2x -1))=2x/√(2x -1)-2 6.10. e x (√(1+ e x )+1) _ e x (√(1+ e x )-1) y'= 2√(1+ex )+2 e x ( x -2) _ √(1+ e x )+1 * 2√(1+ e x ) 2√(1+ e x ) = 2√(1+ex ) √(1+ex )-1 (√(1+ex )+1) = xe x +2 _ 2e x √(1+e x )+2e x = xe x . √(1+ex ) ex √(1+ex )( √(1+ex )+1) √(1+ex ) 6.11. y'= αe αx (αsinβx-βcosβx)+e αx (αβcosβx+β 2 sinβx) = α2 +β2 = e αx (α 2 sinβx+β 2 sinβx) = eαx sinβx α2 +β2 6.12. y'= αe αx (βsinβx-αcosβx)+e αx (β 2 cosβx+αβsinβx) = α2 +β2 = e αx (β 2 cosβx+2αβsinβx-α 2 cosβx) α2 +β2
6.13. y'= aeax * ┌ 1 + acos2bx+2bsin2bx ┐+ eax ┌ -2absin2bx+4b 2 cos2bx ┐= └ 2a 2(a2 +4b2 ) ┘ └ 2(a2 +4b2 ) ┘ = eax /2*(1+cos2bx)= eax cos2 bx 6.14. y' = 1 – e x - e x = 1 - e x -e x -e 2x = 1 + e 2x . (1+ex )2 1+ex (1+ex )2 (1+ex )2 6.15. 3/6*ex/6 *√(1+ex/3 ) + 1/3*e x/3 (1+e x/6 ) y'= 1 - 2√(1+e x/3 ) _ 3/6*e x/6 = (1+ex/6 )√(1+ex/3 ) 1+ex/3 = 1- e x/6 +e x/2 +e x/3 +e x/2 _ e x/6 = 1- e x/3 -e x/6 . 2(1+ex/6 )(1+ex/3 ) 2(1+ex/3 ) 2(1+ex/6 )(1+ex/3 ) 6.16. y' = 1 - 8e x/4 = 1 - 2e x/4 . 4(1+ex/4 )2 (1+ex/4 )2 6.17. ex + e 2x y'= √(e 2x -1) _ e -x = e x (e x +√(e 2x -1)) _ e -x *e x = e x -1 . ex +√(e2x -1) √(1-e-2x ) (ex +√(e2x -1))√(e2x -1) √(e2x -1) √(e2x -1) 6.18. e 2x y'= 1+e-x arcsinex – e -x *e x + √(1-e 2x ) = √(1-e2x ) 1+√(1-e2x ) = 1+e-x arcsinex - 1 + e 2x = √(1-e2x ) (1+√(1-e2x )) √(1-e2x ) = e-x arcsinex 6.19. y'= 1- e x +e-x/2 arctgex/2 – e -x/2 *e x/2 _ ex/2 arctgex/2 = 1+ex 1+ex 1+ex = 1- ex + 1 + arctgex/2 * 1-ex = arctgex/2 * 1-ex . 1+ex 1+ex ex/2 (1+ex ) ex/2 (1+ex ) 6.20. y'= 3x2 ex3 (1+x3 )-3ex3 x2 = 3x5 ex3 (1+x3 )2 (1+x3 )2 6.21. y'= b *memx √a = emx . m√(ab)(b+ae2mx ) √b b+ae2mx 6.22. y'= e3 ^√x /3√x(3 √x2 -23 √x+2)+3e3^√x (2/(33 √x)-2/(33 √x2 ))= e3^√x 3^√x= кубический корень из х 6.23. ( ex +2e2x _ ex )(√(1+ex +e2x )-ex +1) _ ( ex +2e2x _ ex )(√(1+ex +e2x )-ex -1) y'= √(1+ex +e2x )-ex +1 * 2√(1+ex +e2x ) 2√(1+ex +e2x ) = √(1+ex +e2x )-ex -1 (√(1+ex +e2x )-ex +1)2
= ex (1+2e2x -2√(1+ex +e2x )) = 1 . (ex (1+2e2x -2√(1+ex +e2x )))√(1+ex +e2x ) √(1+ex +e2x ) 6.24. y'= cosxesinx (x-1/cosx)+esinx (1-sinx/cos2 x)= esinx (xcosx-sinx/cos2 x) 6.25. y'= ex /2((x2 -1)cosx+(x-1)2 sinx)+ex /2(2xcosx-(x2 -1)sinx+2(x-1)sinx+(x-1)2 cosx)= = ex /2(x-1)(5x+3)cosx 6.26. y'= ex +e-x = e3x +ex . 1+(ex -e-x )2 e4x -e2x +1 6.27. y'= e3^√x /3 √x2 (3 √x5 -53 √x4 +20x-603 √x2 +1203 √x-120)+e3^√x (53 √x2 -203 √x+20-120/3 √x+120/3 √x2 )= e3^√x (x-40) 6.28. y'= -3e3x sh3 x+3e3x sh2 xchx = e3x (chx-shx) 3sh6 x sh4 x 6.29. y'= -e-x + e2x = √(e4x -e2x )-√(e-2x -1) = √(e2x -1)-√(1-e2x ) √(1-e-2x ) √(1-e2x ) √(1-e-2x )*√(1-e2x ) √(1-e-2x ) √(1-e2x ) 6.30. y'= xe-x2 (x4 +2x2 +2)-1/2*e-x2 (4x3 +4x)= x5 e-x2 6.31. y'= 2xex2 (1+x2 )-2ex2 x = 2x3 ex2 (1+x2 )2 (1+x2 )2 |