Курсовая работа: Свинарник на 160 мест
Название: Свинарник на 160 мест Раздел: Рефераты по ботанике и сельскому хозяйству Тип: курсовая работа | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
МИНИСТЕРСТВО ПРОДОВОЛЬСТВИЯ И СЕЛЬСКОГО ХОЗЯЙСТВА РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра энергетики с/х производства КУРСОВОЙ ПРОЕКТ по дисциплине "Основы теплотехнологии" на тему: "Свинарник на 160 мест" Выполнил: студент IV курса, 24э группы Скурат Евгений Вячеславович Руководитель: Синица С.И.
Задание на курсовое проектирование
Примечание: наружные двери и ворота принять деревянными из сосновых досок толщиной 50 мм. Аннотация Курсовая работа представлена расчетно-пояснительной запиской на ____ страницах машинописного текста, содержащей 9 таблиц, и графической частью, включающей 1 лист формата А1. В работе выполнены расчеты теплопотерь через наружные ограждения, теплопоступлений в помещение свинарника, содержащего 160 подсосных свиноматок с поросятами, а также влаговыдлений и газовыделений в данном помещении. Также, определены расходы вентиляционного воздуха в холодный, теплый и переходной периоды года и тепловая мощность отопительно-вентиляционной системы, рассчитаны воздуховоды системы вентиляции, подобраны калориферы и вентиляторы. Содержание 1. Составление исходных данных 2. Расчет теплопотерь через ограждающие конструкции 2.1 Расчет термического сопротивления теплопередаче 2.2 Определение требуемого термического сопротивления теплопередаче 2.3 Сравнение действительных термических сопротивлений с требуемыми 2.4 Расчет площадей отдельных зон пола 2.5 Расчет теплопотерь через ограждающие конструкции 3. Расчет тепловоздушного режима и воздухообмена 3.1.1 Воздухообмен в холодный период 3.2.1 Воздухообмен в переходный период 3.3.1 Воздухообмен в теплый период года 4. Выбор системы отопления и вентиляции 6. Аэродинамический расчет воздуховодов
|
Область |
Температура наиболее холодных суток t** , 0 C |
Холодный период (параметры Б) |
Теплый период (параметры А) |
||
|
|
|
|
||
Гродненская |
-26 |
-22 |
-21,5 |
21,8 |
49,5 |
Для переходного периода принимаем температуру наружного воздуха и энтальпию
.
По литературе [2] из таблицы 10.2 выписываем параметры внутреннего воздуха в таблицу 2.
Таблица 2. Расчетные параметры внутреннего воздуха.
Помещение |
Период года |
Параметры воздуха |
ПДК
|
|
|
|
|||
Помещение для содержания животных |
Холодный |
20 |
40-75 |
2 |
Переходный |
20 |
40-75 |
2 |
|
теплый |
26,8 |
40-75 |
2 |
Здесь - расчетная температура внутреннего воздуха,
;
- относительная влажность, %;
- ПДК углекислого газа в зоне содержания поросят (удельная допустимая концентрация углекислого газа),
, принимаем из таблицы 10.4 [2].
Таблица 3. Выделение теплоты, влаги и углекислого газа.
Группа животных |
Живая масса |
Тепловой поток тепловыделений, |
Влаговыделения, |
Выделения |
|
Полных |
явных |
||||
Подсосные свиноматки с поросятами |
200 |
897 |
646 |
369 |
11,5 |
10 |
100 |
72 |
41,1 |
12,9 |
Таблица 4. Температурные коэффициенты.
Для расчета термических сопротивлений теплопередаче для стен, перекрытий и дверей необходимо знать технические характеристики строительных материалов и конструкций. Из таблицы 1.12 [2] выписываем необходимые данные в таблицу 5.
Таблица 5. Теплотехнические характеристики строительных материалов и конструкций.
Наименование материала |
|
Расчетные коэффициенты при условиях эксплуатации |
||
Теплопроводности, |
Теплоусвоения, |
|||
Бетон |
2400 |
1,86 |
17,88 |
|
Доска сосновая |
500 |
0,18 |
4,54 |
|
Цементно-песчаный раствор |
1800 |
0,93 |
11,09 |
|
Минераловатные плиты |
300 |
0,11 |
1,72 |
|
Рубероид |
600 |
0,17 |
3,53 |
|
Железобетон |
2500 |
2,04 |
16,96 |
2. Расчет теплопотерь через ограждающие конструкции
2.1 Расчет термического сопротивления теплопередаче
Термическое сопротивление теплопередаче, , для стен, покрытий, перекрытий, дверей и ворот:
,
где - коэффициент теплоотдачи на внутренней поверхности ограничивающей конструкции,
;
- термическое сопротивление теплопроводности отдельных слоев,
;
- термическое сопротивление замкнутой воздушной прослойки,
;
- коэффициент теплоотдачи на наружной поверхности ограничивающей поверхности,
.
Проводим расчет для наружных стен.
Рассчитываем заполнение помещения животными, :
,
где - масса одной животного,
(
= 200,
=10),
- количество животных (
=160,
=1280);
- площадь помещения,
(A = 24080
).
;
Так как, заполнение животными помещения и принимаем для стен и потолков
и для наружных стен
.
Термическое сопротивление отдельных слоев, :
,
где - толщина слоя,
;
- теплопроводность материала слоя,
; железобетон:
;
минераловата:
;
железобетон:
.
.
.
Проводим расчет для покрытий и перекрытий.
;
.
доска сосновая:
;
рубероид:
;
минераловатные плиты:
;
доска сосновая:
;
Термическое сопротивление замкнутых воздушных прослоек RВ. П
, определяем по таблице 3.5 [2].
RВ. П
= 0,1428
,
.
Проводим расчет для наружных дверей и ворот.
;
.
сосновые доски:
.
.
Проводим расчет для остекления.
Термическое сопротивление теплопередаче заполнения световых проемов принимаем равным нормированным значениям (стр.32 [2]).
Принимаем остекление в деревянных раздельных переплётах:
.
Проводим расчет для различных зон пола.
Сопротивление теплопередаче полов:
,
где - сопротивление теплопередаче рассматриваемой зоны неутепленного пола,
;
- толщина утепляющего слоя,
;
- теплопроводность утепляющего слоя,
.
Сопротивление теплопередаче принимаем:
для I зоны:
для II зоны:
для III зоны:
для IV зоны:
;
;
;
2.2 Определение требуемого термического сопротивления теплопередаче
Рассчитываем требуемые по санитарно-гигиеническим требованиям термические сопротивления теплопередаче для наружных стен, покрытий и перекрытий, наружных дверей и ворот.
Требуемое сопротивление теплопередаче, , наружных стен, покрытий и перекрытий:
,
где - расчетная температура внутреннего воздуха,
;
- расчетная температура наружного воздуха в холодный период года,
;
- нормативный температурный перепад между внутренним воздухом и
внутренней поверхностью ограничивающей конструкции, ;
- коэффициент, учитывающий положение наружной поверхности по от-
ношению к наружному воздуху.
В качестве расчетной температуры наружного воздуха принимают в зависимости от тепловой инерции наружного ограждения (стр.33 [2]):
при - абсолютно минимальную температуру;
при - среднюю температуру наиболее холодных суток;
при - среднюю температуру наиболее холодных трех суток;
при - среднюю температуру наиболее холодной пятидневки.
Тепловая инерция ограничивающей конструкции:
,
где - расчетный коэффициент теплоусвоения материала отдельных слоев ограждающей конструкции (таблица 5),
.
Проведем расчет для наружных стен.
.
Исходя из полученного выражения в качестве расчетной температуры наружного воздуха, принимаем среднюю температуру наиболее холодных трех суток.
.
Нормативный температурный перепад принимаем исходя из типа помещения (производственное помещение с влажным режимом, таблица 3.6 [2]):
.
Температуру точки росы принимаем из приложения
[1] при
и
-
. Коэффициент
определяем по его нормированным значениям:
.
.
Проводим расчет для покрытий и перекрытий.
.
В качестве расчетной температуры наружного воздуха принимаем среднюю температуру наиболее холодных суток: .
Нормативный температурный перепад:
(таблица 3.6 [2]).
Коэффициент определяем по его нормированным значениям:
.
.
Проводим расчет для световых проемов.
Принимаем сопротивление теплопередаче окон для производственных и вспомогательных промышленных предприятий с влажным или мокрым режимом (таблица 3.7 [2]):
.
Проводим расчет для наружных дверей и ворот.
.
Нормативный температурный перепад:
.
.
.
2.3 Сравнение действительных термических сопротивлений с требуемыми
Исходя из того, что требуемое термическое сопротивление должно быть меньше расчетного термического сопротивления, проверяем соблюдение санитарно-гигиенических норм:
для наружных стен:
;
;
- удовлетворяет.
для покрытий и перекрытий:
;
;
- удовлетворяет.
для наружных дверей и ворот:
;
;
- не удовлетворяет.
для световых проемов:
;
;
- удовлетворяет.
В целом делаем вывод о том, что расчетные термические сопротивления ограждающих конструкций больше требуемых, кроме дверей (т.е. удовлетворяют санитарно гигиеническим нормам). Однако двери нуждаются в дополнительном утеплении.
2.4 Расчет площадей отдельных зон пола
|
![](images/88/9338828.png)
|
|
|
;
;
2.5 Расчет теплопотерь через ограждающие конструкции
,
где - площадь ограждающей конструкции,
;
- термическое сопротивление теплопередаче,
;
- расчетная температура внутреннего воздуха,
;
- расчетная температура наружного воздуха,
;
- добавочные потери теплоты в долях от основных теплопотерь;
- коэффициент учета положения наружной поверхности по отношению к
наружному воздуху.
Н. с. - наружные стены;
Н. д. - наружные двери;
Д. о. - двойное остекление;
Пт - перекрытия;
Пл1, Пл2, Пл3, Пл4 - пол.
Таблица 6. Расчет теплопотерь.
№ помещения |
|
Характеристики ограждений |
|
Доли добавочных теплопотерь |
|
Тепловой поток теплопотерь |
||||||
Наименование |
Ориентация |
Размер |
|
|
на ориентацию |
на инфильтрацию |
прочие |
|||||
|
20 |
Д. о. |
С-З |
|
60,48 |
0,42 |
42 |
0,1 |
0,3 |
- |
1,4 |
8467,2 |
Д. о. |
Ю-В |
|
60,48 |
0,42 |
42 |
0,05 |
0,3 |
- |
1,35 |
8164,8 |
||
Н. с. |
С-З |
|
263,52 |
1,279 |
42 |
0,1 |
0,3 |
- |
1,4 |
12114,9 |
||
Н. с. |
Ю-В |
|
263,52 |
1,279 |
42 |
0,05 |
0,3 |
- |
1,35 |
11682,2 |
||
П. т. |
- |
|
2700 |
1,5417 |
42 |
- |
- |
1 |
73555,2 |
|||
Пл.1 |
- |
640 |
2,12688 |
42 |
- |
- |
- |
1 |
12638,2 |
|||
Пл.2 |
- |
624 |
4,32688 |
42 |
- |
- |
- |
1 |
6057 |
|||
Пл3 |
- |
592 |
8,62688 |
42 |
- |
- |
- |
1 |
2882,15 |
|||
Пл.4 |
- |
828 |
14,22688 |
42 |
- |
- |
- |
1 |
2444,4 |
|||
|
119922,898 |
3. Расчет тепловоздушного режима и воздухообмена
3.1 Холодный период года
Влаговыделения животными, :
,
где - температурный коэффициент влаговыделений (таблица 4);
- влаговыделение одним животным (таблица 3),
;
- число животных.
;
Дополнительные влаговыделения в зимний период составляют 10% от общего влаговыделения:
,
Суммарные влаговыделения:
.
Рассчитаем количество , выделяемого животными,
:
,
где - температурный коэффициент выделений
и полных тепловыделе-
ний;
- количество
, выделяемого одним животным,
.
;
Определим тепловой поток полных тепловыделений, :
,
где - тепловой поток полных тепловыделений одним животным (таблица 3),
.
;
Тепловой поток теплоизбытков, :
,
где ФТП - поток теплопотерь (SФТП таблица 6).
Угловой коэффициент (тепловлажностное отношение), :
.
3.1.1 Воздухообмен в холодный период
Произведем расчет вентиляционного воздуха, , из условия удаления выделяющихся:
водяных паров:
,
где - суммарные влаговыделения внутри помещения,
;
- плотность воздуха,
;
и
- влагосодержания внутреннего и наружного воздуха,
.
Из диаграммы влажного воздуха по рис.1.1 [2] определим и
:
, (при 20
и
);
, (при
и
).
.
углекислого газа:
,
где - расход углекислого газа, выделяемого животными в помещении,
;
- ПДК углекислого газа в помещении (таблица 2),
;
- концентрация углекислого газа в наружном (приточном) воздухе,
, (принимают 0,3 - 0,5
, стр.240 [2]).
.
расход вентиляционного воздуха исходя из нормы минимального воздухообмена: , где
- норма минимального воздухообмена на 1ц
живой массы,
;
- живая масса животных,
.
- масса всех животных.
.
В качестве расчетного значения расхода воздуха в холодный период принимаем наибольший, т.е.
.
3.2 Переходный период года
Для переходного режима года влаговыделения животными:
;
Дополнительные влаговыделения в переходной период составляют 10% от общего влаговыделения.
Определим суммарные влаговыделения:
.
Тепловой поток полных тепловыделений:
Тепловой поток теплоизбытков, :
,
где - тепловой поток полных тепловыделений животными в переходный период,
;
- тепловой поток теплопотерь через ограждающие конструкции в переходный период,
.
,
где и
- расчетные температуры внутреннего и наружного воздуха в переходный период,
.
;
;
;
.
.
Определим угловой коэффициент, :
.
3.2.1 Воздухообмен в переходный период
Рассчитаем расход вентиляционного воздуха, , из условия удаления водяных паров:
.
Влагосодержание внутреннего воздуха:
.
Влагосодержание наружного воздуха определим по
- диаграмме при параметрах
и
.
.
.
.
Для переходного периода года рассчитывается воздухообмен только для удаления водяных паров:
3.3 Теплый период года
Определяем влаговыделения животными, :
,
где - температурный коэффициент влаговыделений;
- влаговыделение одним животным,
;
- число животных.
;
Испарение влаги с открытых водных и смоченных поверхностей:
Суммарные влаговыделения:
.
Определим тепловой поток полных тепловыделений, :
,
где - тепловой поток полных тепловыделений одним животным (таблица 3),
kt
’’’
=1.1- температурный коэффициент полных тепловыделений (таблица 4).
Тепловой поток теплоизбытков, :
,
где - тепловой поток от солнечной радиации,
.
,
где - тепловой поток через покрытие,
;
- тепловой поток через остекление в рассматриваемой наружной
стене, ;
- тепловой поток через наружную стену,
.
,
где =2700
- площадь покрытия (таблица 6);
=1,2787
- термическое сопротивление теплопередаче через покрытие (таблица 6);
= 17,7
- избыточная разность температур, вызванная действием солнечной радиации для вида покрытия - тёмный рубероид, (стр.46 [2]).
.
Тепловой поток через остекление, :
,
где - коэффициент остекления (
), (стр.46 [2]);
- поверхностная плотность теплового потока через остекленную
поверхность, , (С-З:
; Ю-В:
, таблица 3,12 [2]);
=263,52
- площадь остекления.
.
Тепловой поток через наружную стену (за исключением остекления в этой стене):
,
для стены А
где =263,52 - площадь наружной стены,
;
=1,279 - термическое сопротивление теплопередаче наружной стены,
.
- избыточная разность температур,
, (таблица 3.13)
;
для стены В
=263,52
;
=1,0561
;
=7,7
,
;
=719,7 (кВт).
.
Угловой коэффициент, :
.
3.3.1 Воздухообмен в теплый период года
Расход вентиляционного воздуха, , в теплый период года из условия удаления выделяющихся:
водяных паров:
.
Влагосодержание наружного воздуха определим по
- диаграмме (рис.1.1 [2]) при параметрах
и
.
.
Влагосодержание внутреннего воздуха:
.
.
расход вентиляционного воздуха исходя из нормы минимального воздухообмена: , где
- норма минимального воздухообмена на 1ц
живой массы,
;
- живая масса животного,
.
,
.
В качестве расчетного значения расхода воздуха в теплый период принимаем наибольший, т.е. .
4. Выбор системы отопления и вентиляции
На свиноводческих фермах применяют вентиляционные системы, посредствам которых подают подогретый воздух в верхнюю зону помещения по воздуховодам равномерной раздачи.
Кроме того, предусматривают дополнительную подачу наружного воздуха в теплый период года через вентбашни.
Тепловая мощность отопительно-вентиляционной системы, :
,
где - тепловой поток теплопотерь через ограждающие конструкции,
;
- тепловой поток на нагревание вентиляционного воздуха,
;
- тепловой поток на испарение влаги внутри помещения,
;
- тепловой поток явных тепловыделений животными,
.
(табл.6 [2]).
Тепловой поток на нагревание приточного воздуха, :
,
где - расчетная плотность воздуха (
);
- расход приточного воздуха в зимний период года, (
);
- расчетная температура наружного воздуха, (
);
- удельная изобарная теплоемкость воздуха (
).
.
Тепловой поток на испарение влаги с открытых водных и смоченных поверхностей, :
,
где - расход испаряемой влаги для зимнего периода,
.
.
Тепловой поток явных тепловыделений, :
,
где - температурный коэффициент явных тепловыделений;
- тепловой поток явных тепловыделений одним животным,
;
- число голов.
;
Ввиду того, что в здании две венткамеры устанавливаем две ОВС мощностью:
;
Подача воздуха одной ОВС:
;
Определим температуру подогретого воздуха, :
,
где - наружная температура в зимний период года,
;
.
Для пленочных воздуховодов должно соблюдаться условие:
- в нашем случае удовлетворяет.
5. Расчет и выбор калориферов
В системе вентиляции и отопления устанавливаем водяной калорифер. Теплоноситель - горячая вода.
Рассчитаем требуемую площадь живого сечения, , для прохода воздуха:
,
где - массовая скорость воздуха,
, (принимается в пределах 4-10
).
Принимаем массовую скорость в живом сечении калорифера:
.
.
По таблице 8.10 [2] по рассчитанному живому сечению выбираем калорифер марки КПБ со следующими техническими данными:
Таблица 7. Технические данные калорифера КВСБ.
Номер калорифера |
Площадь поверхности нагрева |
Площадь живого сечения по воздуху |
площадь живого сечения по теплоносителю |
10 |
28,11 |
0,581 |
0,00116 |
Уточняем массовую скорость воздуха:
.
Определяем коэффициент теплопередачи, :
,
где - коэффициент, зависящий от конструкции калорифера;
- массовая скорость в живом сечении калорифера,
;
и
- показатели степени.
Из таблицы 8.12 [2] выписываем необходимые данные для КВББ:
;
;
;
;
.
(м/с)
.
Определяем среднюю температуру воздуха, :
.
Определяем среднюю температуру пара (таблица 1,8 [2]) :
. Определяем требуемую площадь поверхности теплообмена калориферной установки,
:
.
Определяем число калориферов:
,
где - общая площадь поверхности теплообмена,
;
- площадь поверхности теплообмена одного калорифера,
.
.
Округляем до большего целого значения, т.е.
.
Определяем процент запаса по площади поверхности нагрева:
.
- удовлетворяет. Аэродинамическое сопротивление калориферов,
:
,
где - коэффициент, зависящий от конструкции калорифера;
- показатель степени.
.
Аэродинамическое сопротивление калориферной установки, :
,
где - число рядов калориферов;
- сопротивление одного ряда калориферов,
.
.
6. Аэродинамический расчет воздуховодов
В с/х производственных помещениях используют перфорированные пленочные воздухораспределители. Предусматривают расположение двух несущих тросов внутри пленочной оболочки, что придает воздуховодам овальную форму при неработающем вентиляторе и тем самым предотвращает слипание пленки.
Задача аэродинамического расчета системы воздуховодов состоит в определении размеров поперечного сечения и потерь давления на отдельных участках системы воздуховодов, а также потери давления во всей системе воздуховодов.
Исходными данными к расчету являются: расход воздуха, длина воздухораспределителя
, температура воздуха и абсолютная шероховатость
мм (для пленочных воздуховодов).
В соответствии с принятыми конструктивными решениями составляют расчетную аксонометрическую схему воздуховодов с указанием вентиляционного оборудования и запорных устройств.
Схему делят на отдельные участки, границами которых являются тройники и крестовины. На каждом участке наносят выносную линию, над которой проставляют расчетный расход воздуха (
), а под линией - длину участка
(м). В кружке у линии указывают номер участка.
Составляем расчетную схему:
Рис.2. Расчетная аксонометрическая схема воздуховодов.
На схеме выбираем основные магистральные расчетные направления, которые характеризуются наибольшей протяженностью.
Расчет начинаем с первого участка.
Используем перфорированные пленочные воздухораспределители. Выбираем форму поперечного сечения - круглая.
Задаемся скоростью в начальном поперечном сечении:
.
Определяем диаметр пленочного воздухораспределителя, :
.
Принимаем ближайший диаметр, исходя из того, что полученный равен (стр. 193 [2]). Динамическое давление,
:
,
где - плотность воздуха.
.
Определяем число Рейнольдса:
,
где - кинематическая вязкость воздуха,
,
(табл.1.6 [2]).
.
Коэффициент гидравлического трения:
,
где - абсолютная шероховатость,
, для пленочных воздуховодов принимаем
.
.
Рассчитаем коэффициент, характеризующий конструктивные особенности воздухораспределителя:
,
где - длина воздухораспределителя,
.
.
Полученное значение коэффициента
0,73, что обеспечивает увеличение статического давления воздуха по мере приближения от начала к концу воздухораспределителя.
Установим минимальную допустимую скорость истечения воздуха через отверстие в конце воздухораспределителя, :
,
где - коэффициент расхода (принимают 0,65 для отверстий с острыми кромками).
.
Коэффициент, характеризующий отношение скоростей воздуха:
,
где - скорость истечения через отверстия в конце воздухораспределителя,
(рекомендуется
), принимаем
.
.
Установим расчетную площадь отверстий, , в конце воздухораспределителя, выполненных на 1
длины:
.
Принимаем один участок.
Определим площадь отверстий, , выполненных на единицу воздуховода:
,
где - относительная площадь воздуховыпускных отверстий на участке воздухораспределителя (
по [1]).
.
Диаметр воздуховыпускного отверстия принимают от 20 до 80
, примем
.
Определим число рядов отверстий:
,
где - число отверстий в одном ряду (
);
- площадь воздуховыпускного отверстия,
.
Определим площадь воздуховыпускного отверстия, :
.
.
Шаг между рядами отверстий, :
.
Определим статическое давление воздуха, :
в конце воздухораспределителя:
;
в начале воздухораспределителя:
.
Потери давления в воздухораспределителе, :
.
Дальнейший расчет сводим в таблицу. Причем:
,
,
,
где R - удельные потери давления на единице длины воздуховода, определяется по монограмме (рис.8.6 [2])
- коэффициент местного сопротивления (таблица 8.7 [2])
скорость воздуха в жалюзийной решетке
Таблица 8. Расчет участков воздуховода.
Номер участка |
|
|
|
|
|
|
|
|
|
|
|
1 |
3916,25 |
66 |
560 |
0,0022 |
6 |
0,62 |
40,92 |
0,4 |
12,59 |
5,036 |
45,956 |
2 |
916,25 |
6 |
560 |
0,0025 |
6 |
0.62 |
3,78 |
1 |
12,59 |
12,59 |
16,31 |
3 |
7832,5 |
5 |
600 |
0,0029 |
8 |
1,6 |
8 |
1,3 |
38,4 |
49,92 |
57,92 |
Калорифер |
7832,5 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
130,68 |
Жал. реш. |
7832,5 |
- |
- |
- |
5 |
- |
- |
2 |
15 |
30 |
30 |
итого: |
280,866 |
7. Вытяжные шахты
Расчет вытяжных шахт естественной вентиляции производят на основании расчетного расхода воздуха в холодный период года. Работа вытяжных шахт будет более эффективной при устойчивой разности температур внутреннего и наружного воздуха (не менее 5°С), что наблюдается в холодный период года.
Скорость воздуха в поперечном сечении вытяжной шахты, :
,
где - высота вытяжной шахты между плоскостью вытяжного отверстия и устьем шахты (3-5),
(принимаем
);
- диаметр (эквивалентный (0.8,0.9,1)) шахты,
(принимаем
);
- расчетная наружная температура,
(
);
- сумма коэффициентов местных сопротивлений.
Местное сопротивление определяем по таблице 8.7 [1]:
для входа в вытяжную шахту: ;
для выхода из вытяжной шахты: .
,
.
Определяем число шахт:
,
где - расчетный расход воздуха в зимний период,
;
- расчетный расход воздуха через одну шахту,
.
Определяем расчетный расход воздуха через одну шахту, :
,
где - площадь поперечного сечения шахты,
.
Рассчитаем площадь поперечного сечения шахты, :
.
.
.
Принимаем число шахт для всего помещения
8. Выбор вентилятора
Подбор вентилятора производят по заданным значениям подачи и требуемого полного давления.
В системах вентиляции и воздушного отопления с/х производственных зданий устанавливают радиальные (центробежные) вентиляторы марок В. Ц 4-75, В. Ц 4-76 и В. Ц 4-46, осевые вентиляторы марок В-06-300 и ВО.
Радиальные вентиляторы изготавливают по схемам конструктивного исполнения 1 и 6. Вентиляторы исполнения 1 более компактны и удобны при эксплуатации, с меньшим уровнем шума.
Подачу вентилятора определяем с учетом потерь или подсосов воздуха в воздуховоды, вводя поправочный коэффициент к расчетному расходу воздуха для стальных воздуховодов 1,15, :
.
Определяем требуемое полное давление вентилятора, :
,
где - температура подогретого воздуха,
=1 - при нормальном атмосферном давлении.
.
По подаче воздуха вентилятора и требуемому полному давлению, согласно графику характеристик вентиляторов ВЦ 4-75 (рис.8.16 [2]), выбираем вентилятор марки: Е 6,3-100-1.
В соответствии с выбранным ранее калорифером и выбранным теперь вентилятором заполняем таблицу характеристик отопительно-вентиляционной системы:
Таблица 9. Характеристика отопительно-вентиляционной системы.
Обозначение |
Кол. систем |
Наим-е помещения |
Тип установки |
Вентилятор |
||||||
тип |
номер |
исполнение |
положение |
|
|
|
||||
2 |
Свинарник |
Е 6,3-100-1. |
ВЦ 4-75 |
6,3 |
1 |
Л |
9007 |
281,04 |
935 |
|
Обозначение |
Электродвигатель |
Воздухонагреватель (калорифер) |
Примечание |
||||||||
Тип |
|
|
Тип |
Номер |
Кол-во |
Тем-ра нагрева |
Мощности, |
|
|||
от |
до |
||||||||||
4А90L6 |
1,5 |
935 |
КВСБ |
10 |
1 |
-22 |
20,4 |
22,605 |
9. Энергосбережение
Наиболее эффективным техническим решением вопроса сокращения расхода тепловой энергии на обеспечение микроклимата, безусловно является использование типа воздуха, удаляемого из животноводческих и птицеводческих помещений. Расчет технико-экономических показателей микроклимата показывает, что применение в системах утилизаторов тепла позволяет сократить расход тепловой энергии на данный технологический процесс более чем в 2 раза. Однако такие системы более металоемкие и требуют дополнительных эксплуатационных затрат электрической энергии на вентиляторы. Использование тепловой энергии в системах вентиляции в основном обеспечивается за счет применения регенеративных и рекуперативных теплообменных аппаратов различной модификации.
Литература
1. Отопление и вентиляция животноводческих зданий. Методические указания к курсовому и дипломному проектированию. - Мн. Ротопринт БАТУ. 1994 г.
2. Справочник по теплоснабжению сельского хозяйства. Под ред. А.В. Ядренцева и др.: - Мн.; Ураджай. 1993 г.