Контрольная работа: Представление информации в ЭВМ, единицы измерения объема данных
Название: Представление информации в ЭВМ, единицы измерения объема данных Раздел: Рефераты по информатике Тип: контрольная работа |
Содержание. 1. Представление информации в ЭВМ, единицы измерения объема данных………………………………………………………………...……………...3 1.1. Представление информации…………………………………...3 1.2. Единицы измерения объема данных…………………………..9 Список использованной литературы……………….……………………………..12 1. Представление информации в ЭВМ, единицы измерения объема данных. 1.1 Представление информации в ЭВМ. В настоящее время во всех вычислительных машинах информация представляется с помощью электрических сигналов. При этом возможны две формы ее представления – в виде непрерывного сигнала (с помощью сходной величины – аналога) и в виде нескольких сигналов (с помощью набора напряжений, каждое из которых соответствует одной из цифр представляемой величины). Первая форма представления информации называется аналоговой, или непрерывной. Величины, представленные в такой форме, могут принимать принципиально любые значения в определенном диапазоне. Количество значений, которые может принимать такая величина, бесконечно велико. Отсюда названия – непрерывная величина и непрерывная информация. Слово непрерывность отчетливо выделяет основное свойство таких величин – отсутствие разрывов, промежутков между значениями, которые может принимать данная аналоговая величина. При использовании аналоговой формы для создания вычислительной машины потребуется меньшее число устройств (каждая величина представляется одним, а не несколькими сигналами), но эти устройства будут сложнее (они должны различать значительно большее число состояний сигнала). Непрерывная форма представления используется в аналоговых вычислительных машинах (АВМ). Эти машины предназначены в основном для решения задач, описываемых системами дифференциальных уравнений: исследования поведения подвижных объектов, моделирования процессов и систем, решения задач параметрической оптимизации и оптимального управления. Устройства для обработки непрерывных сигналов обладают более высоким быстродействием, они могут интегрировать сигнал, выполнять любое его функциональное преобразование и т. п. Однако из-за сложности технической реализации устройств выполнения логических операций с непрерывными сигналами, длительного хранения таких сигналов, их точного измерения АВМ не могут эффективно решать задачи, связанные с хранением и обработкой больших объемов информации. Вторая форма представления информации называется дискретной (цифровой). Такие величины, принимающие не все возможные, а лишь вполне определенные значения, называются дискретными (прерывистыми). В отличие от непрерывной величины, количество значений дискретной величины всегда будет конечным. Дискретная форма представления используется в цифровых электронно-вычислительных машинах (ЭВМ), которые легко решают задачи, связанные с хранением, обработкой и передачей больших объемов информации. Для автоматизации работы ЭВМ с информацией, относящейся к различным типам, очень важно унифицировать их форму представления – для этого обычно используется прием кодирования. Кодирование – это представление сигнала в определенной форме, удобной или пригодной для последующего использования сигнала. Говоря строже, это правило, описывающее отображение одного набора знаков в другой набор знаков. Тогда отображаемый набор знаков называется исходным алфавитом, а набор знаков, который используется для отображения, – кодовым алфавитом, или алфавитом для кодирования. При этом кодированию подлежат как отдельные символы исходного алфавита, так и их комбинации. Аналогично для построения кода используются как отдельные символы кодового алфавита, так и их комбинации. Совокупность символов кодового алфавита, применяемых для кодирования одного символа (или одной комбинации символов) исходного алфавита, называется кодовой комбинацией, или, короче, кодом символа. При этом кодовая комбинация может содержать один символ кодового алфавита. Символ (или комбинация символов) исходного алфавита, которому соответствует кодовая комбинация, называется исходным символом. Совокупность кодовых комбинаций называется кодом. Взаимосвязь символов (или комбинаций символов, если кодируются не отдельные символы исходного алфавита) исходного алфавита с их кодовыми комбинациями составляет таблицу соответствия (или таблицу кодов). В качестве примера можно привести систему записи математических выражений, азбуку Морзе, морскую флажковую азбуку, систему Брайля для слепых и др. В вычислительной технике также существует своя система кодирования – она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1 (используется двоичная система счисления). Эти знаки называются двоичными цифрами, или битами (binary digital). Если увеличивать на единицу количество разрядов в системе двоичного кодирования, то увеличивается в два раза количество значений, которое может быть выражено в данной системе. Для расчета количества значений используется следующая формула: N=2m, где N – количество независимо кодируемых значений, а m – разрядность двоичного кодирования, принятая в данной системе. Например, какое количество значений (N) можно закодировать 10-ю разрядами (m)? Для этого возводим 2 в 10 степень (m) и получаем N=1024, т. е. в двоичной системе кодирования 10-ю разрядами можно закодировать 1024 независимо кодируемых значения. Кодирование текстовой информации Для кодирования текстовых данных используются специально разработанные таблицы кодировки, основанные на сопоставлении каждого символа алфавита с определенным целым числом. Восьми двоичных разрядов достаточно для кодирования 256 различных символов. Этого хватит, чтобы выразить различными комбинациями восьми битов все символы английского и русского языков, как строчные, так и прописные, а также знаки препинания, символы основных арифметических действий и некоторые общепринятые специальные символы. Но не все так просто, и существуют определенные сложности. В первые годы развития вычислительной техники они были связаны с отсутствием необходимых стандартов, а в настоящее время, наоборот, вызваны изобилием одновременно действующих и противоречивых стандартов. Практически для всех распространенных на земном шаре языков созданы свои кодовые таблицы. Для того чтобы весь мир одинаково кодировал текстовые данные, нужны единые таблицы кодирования, что до сих пор пока еще не стало возможным. Кодирование графической информации Кодирование графической информации основано на том, что изображение состоит из мельчайших точек, образующих характерный узор, называемый растром. Каждая точка имеет свои линейные координаты и свойства (яркость), следовательно, их можно выразить с помощью целых чисел – растровое кодирование позволяет использовать двоичный код для представления графической информации. Черно-белые иллюстрации представляются в компьютере в виде комбинаций точек с 256 градациями серого цвета – для кодирования яркости любой точки достаточно восьмиразрядного двоичного числа. Для кодирования цветных графических изображений применяется принцип декомпозиции (разложения) произвольного цвета на основные составляющие. При этом могут использоваться различные методы кодирования цветной графической информации. Например, на практике считается, что любой цвет, видимый человеческим глазом, можно получить путем механического смешивания основных цветов. В качестве таких составляющих используют три основных цвета: красный (Red, R), зеленый (Green, G) и синий (Blue, B). Такая система кодирования называется системой RGB. На кодирование цвета одной точки цветного изображения надо затратить 24 разряда. При этом система кодирования обеспечивает однозначное определение 16,5 млн различных цветов, что на самом деле близко к чувствительности человеческого глаза. Режим представления цветной графики с использованием 24 двоичных разрядов называется полноцветным (True Color). Каждому из основных цветов можно поставить в соответствие дополнительный цвет, то есть цвет, дополняющий основной цвет до белого. Соответственно дополнительными цветами являются: голубой (Cyan, C), пурпурный (Magenta, M) и желтый (Yellow, Y). Такой метод кодирования принят в полиграфии, но в полиграфии используется еще и четвертая краска – черная (Black, K). Данная система кодирования обозначается CMYK, и для представления цветной графики в этой системе надо иметь 32 двоичных разряда. Такой режим называется полноцветным (True Color). Если уменьшать количество двоичных разрядов, используемых для кодирования цвета каждой точки, то можно сократить объем данных, но при этом диапазон кодируемых цветов заметно сокращается. Кодирование цветной графики 16-разрядными двоичными числами называется режимом High Color. Кодирование звуковой информации Приемы и методы кодирования звуковой информации пришли в вычислительную технику наиболее поздно и до сих пор далеки от стандартизации. Множество отдельных компаний разработали свои корпоративные стандарты, хотя можно выделить два основных направления. Метод FM (Frequency Modulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармоничных сигналов разной частоты, каждый из которых представляет правильную синусоиду, а следовательно, может быть описан числовыми параметрами, то есть кодом. В природе звуковые сигналы имеют непрерывный спектр, то есть являются аналоговыми. Их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства – аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). При таких преобразованиях часть информации теряется, поэтому качество звукозаписи обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с «окрасом», характерным для электронной музыки. Метод таблично-волнового синтеза (Wave-Table) лучше соответствует современному уровню развития техники. Имеются заранее подготовленные таблицы, в которых хранятся образцы звуков для множества различных музыкальных инструментов. В технике такие образцы называются сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения. Поскольку в качестве образцов используются «реальные» звуки, то качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов. 1.2 Единицы измерения объема информации. Для измерения длины есть такие единицы, как миллиметр, сантиметр, метр, километр. Известно, что масса измеряется в граммах, килограммах, центнерах и тоннах. Бег времени выражается в секундах, минутах, часах, днях, месяцах, годах, веках. Компьютер работает с информацией и для измерения ее объема также имеются соответствующие единицы измерения. Мы уже знаем, что компьютер воспринимает всю информацию через нули и единички. Бит – это минимальная единица измерения информации, соответствующая одной двоичной цифре («0» или «1»). Байт состоит из восьми бит. Используя один байт, можно закодировать один символ из 256 возможных (256 = 28). Таким образом, один байт равен одному символу, то есть 8 битам: 1 символ = 8 битам = 1 байту. Изучение компьютерной грамотности предполагает рассмотрение и других, более крупных единиц измерения информации. Таблица байтов: 1 байт = 8 бит 1 Кб (1 Килобайт) = 210 байт = 2*2*2*2*2*2*2*2*2*2 байт = = 1024 байт (примерно 1 тысяча байт – 103 байт) 1 Мб (1 Мегабайт) = 220 байт = 1024 килобайт (примерно 1 миллион байт – 106 байт) 1 Гб (1 Гигабайт) = 230 байт = 1024 мегабайт (примерно 1 миллиард байт – 109 байт) 1 Тб (1 Терабайт) = 240 байт = 1024 гигабайт (примерно 1012 байт). Терабайт иногда называют тонна. 1 Пб (1 Петабайт) = 250 байт = 1024 терабайт (примерно 1015 байт). 1 Эксабайт = 260 байт = 1024 петабайт (примерно 1018 байт). 1 Зеттабайт = 270 байт = 1024 эксабайт (примерно 1021 байт). 1 Йоттабайт = 280 байт = 1024 зеттабайт (примерно 1024 байт). В приведенной выше таблице степени двойки (210, 220, 230 и т.д.) являются точными значениями килобайт, мегабайт, гигабайт. А вот степени числа 10 (точнее, 103, 106, 109 и т.п.) будут уже приблизительными значениями, округленными в сторону уменьшения. Таким образом, 210 = 1024 байта представляет точное значение килобайта, а 103 = 1000 байт является приблизительным значением килобайта. Такое приближение (или округление) вполне допустимо и является общепринятым. Ниже приводится таблица байтов с английскими сокращениями (в левой колонке): 1 Kb ~ 103 b = 10*10*10 b= 1000 b – килобайт 1 Mb ~ 106 b = 10*10*10*10*10*10 b = 1 000 000 b – мегабайт 1 Gb ~ 109 b – гигабайт 1 Tb ~ 1012 b – терабайт 1 Pb ~ 1015 b – петабайт 1 Eb ~ 1018 b – эксабайт 1 Zb ~ 1021 b – зеттабайт 1 Yb ~ 1024 b – йоттабайт Выше в правой колонке приведены так называемые «десятичные приставки», которые используются не только с байтами, но и в других областях человеческой деятельности. Например, приставка «кило» в слове «килобайт» означает тысячу байт, также как в случае с километром она соответствует тысяче метров, а в примере с килограммом она равна тысяче грамм. Возникает вопрос: есть ли продолжение у таблицы байтов? В математике есть понятие бесконечности, которое обозначается как перевернутая восьмерка: ∞. Понятно, что в таблице байтов можно и дальше добавлять нули, а точнее, степени к числу 10 таким образом: 1027, 1030, 1033 и так до бесконечности. Но зачем это надо? В принципе, пока хватает терабайт и петабайт. В будущем, возможно, уже мало будет и йоттабайта. Напоследок парочка примеров по устройствам, на которые можно записать терабайты и гигабайты информации. Есть удобный «терабайтник» – внешний жесткий диск, который подключается через порт USB к компьютеру. На него можно записать терабайт информации. Особенно удобно для ноутбуков (где смена жесткого диска бывает проблематична) и для резервного копирования информации. Лучше заранее делать резервные копии информации, а не после того, как все пропало. Флешки бывают 1 Гб, 2 Гб, 4 Гб, 8 Гб, 16 Гб, 32 Гб и 64 Гб. CD-диски могут вмещать 650 Мб, 700 Мб, 800 Мб и 900 Мб. DVD-диски рассчитаны на большее количество информации: 4.7 Гб, 8.5 Гб, 9.4 Гб и 17 Гб. Список использованной литературы. 1. Информатика./под ред. В.В. Трофимова. – М.: Юрайт, Высшее образование, 2010.- 912 с. 2. Информатика. Базовый курс. 2-е издание./под ред.Симоновича С.Учебник для ВУЗов. - СПб.: ПИТЕР, 2008.- 640 с. 3. Информатика для экономистов: Учебник/ Под общ. ред. В.М. Матюшка. – М.: ИНФА-М, 2007. - 880 с. 4. Судоплатов С.В., Овчинникова Е.В. Математическая логика и теория алгоритмов: Учебник - ("Высшее образование")- ИНФРА-М, Изд-во НГТУ, 2008, 224 с. 5. Корнеев И.К., Машурцев В.А., Ксандопуло Г.Н. Информационные технологии: Учебник. –Проспект ТК Велби, 2009.- 224 с. 6. Могилев А.В., Хеннер Е.К., Пак Н.И. Информатика: Учебное пособие для студентов пед. вузов - 5-е изд.,- Академия, 2007.- 848 с. 7. Артамонов В.С.,Серебряков Е.С. Персональный компьютер для начинающих. уч.пос. СпбГерда, 2000. 8. Серова Г.А. Учимся работать с офисными программами. уч.пос. М.Финансы и статистика, 2000. |