Реферат: Методика введения понятия производной функции
Название: Методика введения понятия производной функции Раздел: Рефераты по педагогике Тип: реферат |
Министерство образования Республики Беларусь Учреждение образования "Гомельский государственный университет им. Ф. Скорины" Математический факультет Кафедра МПМ Методика введения понятия производной функции Реферат Исполнитель: Студентка группы М-33 Бондорчук А.Ю. Научный руководитель: Канд. физ-мат. наук, доцент Лебедева М.Т. Гомель 2007 Содержание Введение 1. Образовательные цели изучения производной функции 2. Различные подходы к введению понятия производной функции в курсе средней школы 3. Методическая схема изучения производной 4. Изучение приложения производной в курсе школьной математики Заключение Литература ВведениеЦель изучения курса алгебры и начала анализа в 10-11 в.в. систематическое изучение функций как важнейшего математического объекта средствами алгебры и математического анализа, раскрытие политехнического и прикладного значения общих методов математики, связанных с исследованием функций, подготовки необходимого апорта для изучения геометрии и физики. Курс характеризуется содержательным раскрытием понятий, утверждений и методов, относящихся к началом анализа, выявлением их практической значимости. При изучении вопросов анализа широко используются наглядные соображения: уровень строгости изложения определяется с учётом общеобразовательной направленности изучения начал анализа и согласуется с уровнем строгости приложений изучаемого материала в смежных дисциплинах. 1. Образовательные цели изучения производной функцииПри изучении темы "Производная" проявляются известные трудности, связанные с осуществлением предельных переходов. Важно поэтому придать изложению возможно более наглядный и конкретный характер. Включённые в курс сведения о пределах имеют вспомогательный характер, они не обходимы для вывода формул производных. Основное внимание должно быть уделено не формальному применению теорем о пределах, а сознательному проведению предельных переходов для приближённого вычисления значений конкретных функций и их приращений. Многочлены невысоких степеней и их частных -наиболее простой объект для иллюстрации идеи предельного перехода. Определению производной функции как предела разностного отношения предшествует рассмотрению особенностей поведения графиков гладких функций, приводящее к понятию касательной. Производная функции появляется сначала как тангенс угла наклона касательной к оси абсцисс. Тем самым с понятием производной на первом этапе связывается наглядный образ – касательная. Предельные переходы появляются как средство вычисления производной. При изучении применения производной существенная роль отводится наглядным представлениям о производной. Опора на геометрический и механический смысл делают интуитивно ясными критерии возрастания и убывания функций, признаки максимума минимума. Решение тестовых задач физического, геометрического и практического содержания с применением производной позволяет учащимся ознакомиться со всеми этапами решения прикладных задач: составление математической модели (перевод задачи на язык функций), решение полученной задачи средствами математического анализа, и наконец, интерпретация полученного решения в терминах исходной задачи. 2. Различные подходы к введению понятия производной функции в курсе средней школыРазличные подходы к введению производной определяются логической связью этого понятия с более общим понятием предела функции в точке. Логический подход при введении производной в качестве базисного понятия использует определение предела функции в точке. Так в учебных программах по математике 1968 года, используя этот подход, определяли это понятие: 1) исходя из арифметического толкования предела функции (определение по Коши или на языке абсолютной погрешности): 2) исходя из операции предела функции в точке через окрестности (топологическое):a- предельная точка множества E, т.е. В действующих школьных программах по математике при введении производной функции используют исторический подход, т.е. первоначально формируются понятия производной, и только затем, как обобщение, понятие предела функции. При таком подходе большое внимание уделяется практическим аспектам изучения производной. 3. Методическая схема изучения производнойI.Привести подводящую задачу, раскрывающую физический смысл понятия производной: свободное падение тела, которое не является равномерным. Охарактеризуем скорость падения в каждый данный момент времени t , т.е. введём понятие мгновенной скорости свободного падения тела. Известно, что средняя скорость определяется отношением , причём чем меньше значение , тем менее "заметно" изменение средней скорости падения. При , отношение стремится к значению мгновенной скорости. Таким образом мгновенная скорость характеризует скорость изменения пути в момент времени t. В общем случае, с любым реальным процессом может быть связана задача: Пусть -параметр данного процесса, зависимости от x ; найти скорость изменения параметра в момент, когда . Решение задачи сводится к нахождению отношения приращения параметра , соответствующую приращению . II.Сформулировать определение понятия производной. Так как в определении отсутствует понятие предела, то первоначально следует сформировать у учащихся понятие приращения как изменения и аргумента и функции. Например: После рассмотрения геометрического смысла производной вводим определение: Производной функции в точке называется число, к которому стремится разностное отношение: Полезен небольшой анализ формулировки определения, позволяющий чётче выделить признаки данного понятия: 1) число, 2) к которому стремится разностное отношение 3) при Закреплению определения производной способствует вопрос: "Как найти производную функции в точке ?", ответ на который может быть дан в форме алгоритма: 1) значению придаём приращение ; 2) находим приращение функции в точке ; 3) составляем разностное соотношение; 4) находим число (если такое число существует), к которому стремится при III . Конкретизировать понятие производной (путём вычисления производной по определению: выяснение её геометрического смысла, графическое отыскание производной) Первый пример на выяснение производной полезно выполнить на двух уровнях: а) задано конкретным числом; б) берётся в общем виде. Например: Дана функция . Найти её производную в точке: а) x=2; б) а) Придадим приращение в точке х=2, новое (приращённое) значение аргумента –(2+). Найдём приращение функции: Вычислим разность отношения Оно стремится к 2 при б) , приращённое значение аргумента : + . Составим разностные отношение: , которые при стремится к числу . Для конкретизации понятия производной может быть использован графический метод, суть которого в следующем: 1) На примере функции покажите, что разностное отношение есть функция с аргументом . Охарактеризуйте эту функцию. Обратимся к рассмотренному примеру: , , Наша функция возрастающая, т.е. если 2) Постройте график функции и с его помощью покажите число, к которому стремится отношение при . Пусть 3) Мотивировать необходимость теорем о вычислении производной, сформулировать и доказать эти теоремы. 4) Рассмотреть приложение производной. 4. Изучение приложения производной в курсе школьной математикиПонятие непрерывной функции Остановимся на понятии непрерывной функции: функция стремится к числу при (), если разность сколь угодно мала, т.е. становится меньше любого фиксированного при уменьшении . Нахождение числа по функции называется предельным переходом. Этим названием уже пользовались, давая определения производной. Предельный переход – новая операция для нахождения неизвестных величин. Так, например, функция называется непрерывной в точке x 0 , если при или =. В учебнике "Алгебры и начала анализа 10-11 класс" формулируются правила новой операции: 1) Если функция непрерывна в точке , то при 2) Если функция имеет производную в точке , то: при 3) Пусть , при. Тогда при : а) ; б) ; в) , если . Метод интервалов Приложения производной начинаются с рассмотрения приложения непрерывной функции: "Если на интервале функция непрерывна и не обращается в нуль, то на этом интервале она сохраняет постоянный знак! " Эта теорема применяется в решении неравенств методом интервалов. В более "сильных" классах можно заменить нахождение знака данной функции на каждом из интервалов проведением кривой знаков ", которая берет свое начало в правом верхнем углу, если знак коэффициента при старшей степени положителен, и в правом нижнем углу в противном случае (вспомнить аналогию с расположением ветвей параболы для функции ). Например: решить неравенство Ответ: . Исследование свойств функции с помощью производной Рассматриваются примеры разрывной функции: , непрерывной, но не дифференцируемой в точке, функции . При исследовании свойств функции с помощью производной опираются на такие известные теоремы математического анализа, как теоремы Лагранжа, Ферма и Вейерштрасса. Формула Лагранжа как иллюстрация геометрического смысла производной приводится в пункте 19 "Касательная к графику функции" и, немного позже, с ее применением формулируется достаточные признаки возрастания и убывания функции: ; , т.к. , где - формула Лагранжа. Методическая схема изучения достаточных признаков возрастания и убывания функции: · поставить учебную проблему; · подвести учащихся к формулировке признака с помощью геометрической иллюстрации; · сформулировать признак, привести краткую запись его условия и заключения. · привести доказательство признака с помощью формулы Лагранжа; · закрепить доказательство путем выделения в нем составляющих шагов. Например, подведение учащихся к формулировке признака возрастания функции конкретно- индуктивным методом можно осуществить следующим образом, обращаясь к учащимся, учитель говорит: "Можно ли охарактеризовать поведение функции с помощью производной? ". Рассмотрим рисунок Как ведет себя функция ? Здесь приведен график функции, которая в каждой точке промежутка (a,b) имеет положительную производную. Что можно сказать о поведении функции на данном промежутке? Высказывается предположение, что функция возрастает. Справедливо ли это? Для ответа на этот вопрос приводятся примеры других функций, производная которых положительна на некотором промежутке: , ; , . На основе индуктивного обобщения рассмотренных примеров формулируется соответствующий признак. ЗаключениеТ.о. методическая схема изучения достаточных признаков возрастания и убывания функции: · поставить учебную проблему; · подвести учащихся к формулировке признака с помощью геометрической иллюстрации; · сформулировать признак, привести краткую запись его условия и заключения. · привести доказательство признака с помощью формулы Лагранжа; · закрепить доказательство путем выделения в нем составляющих шагов. Литература1. К.О. Ананченко "Общая методика преподавания математики в школе", Мн., "Унiверсiтэцкае",1997г. 2.Н.М.Рогановский "Методика преподавания в средней школе", Мн., "Высшая школа", 1990г. 3.Г.Фройденталь "Математика как педагогическая задача",М., "Просвещение", 1998г. 4.Н.Н. "Математическая лаборатория", М., "Просвещение", 1997г. 5.Ю.М.Колягин "Методика преподавания математики в средней школе", М., "Просвещение", 1999г. 6.А.А.Столяр "Логические проблемы преподавания математики", Мн., "Высшая школа", 2000г. |