Реферат: Особенности развития структурная и функциональная организация суперЭВМ
Название: Особенности развития структурная и функциональная организация суперЭВМ Раздел: Рефераты по информатике Тип: реферат | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Факультет автоматики и вычислительной техники Кафедра вычислительной техники Организация ЭВМ и систем Реферат на тему «Особенности развития, структурная и функциональная организация суперЭВМ» Исполнитель студент группы 8030 __________ И.А. Переливский Руководитель доцент, к.т.н__________А.Д. Чередов Томск – 2008 СОДЕРЖАНИЕ Введение.........................................................................................................3 1. Краткая история появления параллелелизма в ЭВМ...................5 2. Классификация параллельных вычислительных систем............8 3. Основные концепции проектирования суперЭВМ....................15 4. Краткие харатеристики наиболее распространенных суперкомпьютеров……………………………………………………………….20 5. Десятка самых мощных компьютеров........................................30 Заключение..................................................................................................32 Список источников.....................................................................................33 ВВЕДЕНИЕ В настоящее время переход к новым поколениям вычислительных средств приобретает особую актуальность. Это связано с потребностями решения сложных задач больших размерностей. Непрерывный рост характеристик новых образцов вооружений требует разработки и создания принципиально новых вычислительных средств для поддержки их эффективного функционирования. В связи с этим, все более возрастают требования к производительности и надежности вычислительных средств для решения военно-прикладных задач. Однопроцессорные вычислительные системы уже не справляются с решением большинства военно-прикладных задач в реальном времени, поэтому для повышения производительности вычислительных систем военного назначения все чаще используются многопроцессорные вычислительные системы (МВС). Наибольший вклад в развитие вычислительных средств всегда вносили технологические решения, при этом основополагающей характеристикой поколения вычислительных систем являлась элементная база, так как переход на новую элементную базу хорошо коррелируется с новым уровнем показателей производительности и надежности вычислительных систем. Разработка все новых и новых поколений микропроцессоров несколько приостановило поиски принципиально новых архитектурных решений. В то же время становится очевидным, что чисто технологические решения утратили свое монопольное положение. Так, например, в ближайшей перспективе заметно возрастает значение проблемы преодоления разрыва между аппаратными средствами и методами программирования. Данная проблема решается чисто архитектурными средствами, при этом роль технологии является косвенной: высокая степень интеграции создает условия для реализации новых архитектурных решений. При этом стало очевидным, что без кардинальной перестройки архитектурных принципов поддерживать интенсивные темпы развития средств вычислительной техники уже невозможно. Основными требованиями, предъявляемыми к многопроцессорным системам с массовым параллелизмом, являются: необходимость высокой производительности для любого алгоритма; согласование производительности памяти с производительностью вычислительной части; способность микропроцессоров согласованно работать при непредсказуемых задержках данных от любого источника и, наконец, машинно-независимое программирование. Увеличение степени параллелизма вызывает увеличение числа логических схем, что сопровождается увеличением физических размеров, в результате чего возрастают задержки сигналов на межсоединениях. Этот фактор приводит либо к снижению тактовой частоты, либо к созданию дополнительных логических ступеней и, в результате, к потере производительности. Рост числа логических схем также приводит к росту потребляемой энергии и отводимого тепла. Кроме того, следует подчеркнуть, что более высокочастотные логические схемы при прочих равных условиях потребляют большую мощность на один вентиль. В результате возникает теплофизический барьер, обусловленный двумя факторами: высокой удельной плотностью теплового потока, что требует применения сложных средств отвода тепла, и высокой общей мощностью системы, что вызывает необходимость использования сложной системы энергообеспечения и специальных помещений. Другим фактором, влияющим на архитектуру высокопроизводительных вычислительных систем, является взаимозависимость архитектуры и алгоритмов задач. Этот фактор часто приводит к необходимости создания проблемно-ориентированных систем, при этом может быть достигнута максимальная производительность для данного класса задач. Указанная взаимозависимость является стимулом для поиска алгоритмов, наилучшим образом соответствующих возможным формам параллелизма на уровне аппаратуры. А так как для написания программ используются языки высокого уровня, необходимы определенные средства автоматизации процессов распараллеливания и оптимизации программ. 1. КРАТКАЯ ИСТОРИЯ ПОЯВЛЕНИЯ ПАРАЛЛЕЛЕЛИЗМА В ЭВМ Идеи параллельной обработки появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных, компьютерах своего времени. Затем после должной отработки технологии и удешевления производства они спускались в компьютеры среднего класса, и наконец, сегодня, все это в полном объеме воплощается в рабочих станциях и персональных компьютерах. Для того чтобы убедиться, что все основные нововведения в архитектуре современных процессоров на самом деле используются еще со времен, когда ни микропроцессоров, ни понятия суперкомпьютеров еще не было, совершим маленький экскурс в историю, начав практически с момента рождения первых ЭВМ. IBM 701 (1953), IBM 704 (1955): разрядно-параллельная память, разрядно-параллельная арифметика. Все самые первые компьютеры (EDSAC, EDVAC, UNIVAC) имели разрядно-последовательную память, из которой слова считывались последовательно бит за битом. Первым коммерчески доступным компьютером, использующим разрядно-параллельную память (на CRT) и разрядно-параллельную арифметику, стал IBM 701, а наибольшую популярность получила модель IBM 704 (продано 150 экз.), в которой, помимо сказанного, была впервые применена память на ферритовых сердечниках и аппаратное АУ с плавающей точкой. IBM 709 (1958): независимые процессоры ввода/вывода. Процессоры первых компьютеров сами управляли вводом/выводом. Однако скорость работы самого быстрого внешнего устройства, а по тем временам это магнитная лента, была в 1000 раз меньше скорости процессора, поэтому во время операций ввода/вывода процессор фактически простаивал. В 1958г. к компьютеру IBM 704 присоединили 6 независимых процессоров ввода/вывода, которые после получения команд могли работать параллельно с основным процессором, а сам компьютер переименовали в IBM 709. Данная модель получилась удивительно удачной, так как вместе с модификациями было продано около 400 экземпляров, причем последний был выключен в 1975 году - 20 лет существования! IBM STRETCH (1961): опережающий просмотр вперед, расслоение памяти. В 1956 году IBM подписывает контракт с Лос-Аламосской научной лабораторией на разработку компьютера STRETCH, имеющего две принципиально важные особенности: опережающий просмотр вперед для выборки команд и расслоение памяти на два банка для согласования низкой скорости выборки из памяти и скорости выполнения операций. ATLAS (1963): конвейер команд. Впервые конвейерный принцип выполнения команд был использован в машине ATLAS, разработанной в Манчестерском университете. Выполнение команд разбито на 4 стадии: выборка команды, вычисление адреса операнда, выборка операнда и выполнение операции. Конвейеризация позволила уменьшить время выполнения команд с 6 мкс до 1,6 мкс. Данный компьютер оказал огромное влияние, как на архитектуру ЭВМ, так и на программное обеспечение: в нем впервые использована мультипрограммная ОС, основанная на использовании виртуальной памяти и системы прерываний.
CDC 6600 (1964): независимые функциональные устройства. - время такта 100нс; - производительность 2-3 млн. операций в секунду; - оперативная память разбита на 32 банка по 4096 60-ти разрядных слов; - цикл памяти 1мкс; - 10 независимых функциональных устройств. Машина имела громадный успех на научном рынке, активно вытесняя машины фирмы IBM. CDC 7600 (1969): конвейерные независимые функциональные устройства. CDC выпускает компьютер CDC-7600 с восемью независимыми конвейерными функциональными устройствами - сочетание параллельной и конвейерной обработки. Основные параметры: - такт 27,5 нс; - 10-15 млн. опер/сек; - 8 конвейерных ФУ; - 2-х уровневая память. ILLIAC IV (1974): матричные процессоры. - Проект: 256 процессорных элементов (ПЭ) = 4 квадранта по 64ПЭ, возможность реконфигурации: 2 квадранта по 128ПЭ или 1 квадрант из 256ПЭ, такт 40нс, производительность 1Гфлоп; - работы начаты в 1967 году, к концу 1971 изготовлена система из 1 квадранта, в 1974г. она введена в эксплуатацию, доводка велась до 1975 года; - центральная часть: устройство управления (УУ) + матрица из 64 ПЭ; - УУ это простая ЭВМ с небольшой производительностью, управляющая матрицей ПЭ; все ПЭ матрицы работали в синхронном режиме, выполняя в каждый момент времени одну и ту же команду, поступившую от УУ, но над своими данными; - ПЭ имел собственное АЛУ с полным набором команд, ОП - 2Кслова по 64 разряда, цикл памяти 350нс, каждый ПЭ имел непосредственный доступ только к своей ОП; - сеть пересылки данных: двумерный тор со сдвигом на 1 по границе по горизонтали. Несмотря на результат в сравнении с проектом: стоимость в 4 раза выше, сделан лишь 1 квадрант, такт 80нс, реальная производительность до 50Мфлоп - данный проект оказал огромное влияние на архитектуру последующих машин, построенных по схожему принципу, в частности: PEPE, BSP, ICL DAP. CRAY 1 (1976): векторно-конвейерные процессоры. В 1972 году С. Крэй покидает CDC и основывает свою компанию Cray Research, которая в 1976г. выпускает первый векторно-конвейерный компьютер CRAY-1: время такта 12.5нс, 12 конвейерных функциональных устройств, пиковая производительность 160 миллионов операций в секунду, оперативная память до 1Мслова (слово - 64 разряда), цикл памяти 50нс. Главным новшеством является введение векторных команд, работающих с целыми массивами независимых данных и позволяющих эффективно использовать конвейерные функциональные устройства. 2. КЛАССИФИКАЦИЯ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ Основным параметром классификации паралелльных компьютеров является наличие общей (SMP) или распределенной памяти (MPP). Нечто среднее между SMP и MPP представляют собой NUMA-архитектуры, где память физически распределена, но логически общедоступна. Кластерные системы являются более дешевым вариантом MPP. При поддержке команд обработки векторных данных говорят о векторно-конвейерных процессорах, которые, в свою очередь могут объединяться в PVP-системы с использованием общей или распределенной памяти. Все большую популярность приобретают идеи комбинирования различных архитектур в одной системе и построения неоднородных систем. При организациях распределенных вычислений в глобальных сетях (Интернет) говорят о мета-компьютерах, которые, строго говоря, не представляют из себя параллельных архитектур. Более подробно особенности всех перечисленных архитектур будут рассмотрены далее на этой странице, а также в описаниях конкретных компьютеров - представителей этих классов. Для каждого класса приводится следующая информация: -краткое описание особенностей архитектуры; - примеры конкретных компьютеров; - перспективы масштабируемости; - типичные особенности построения операционных систем; - наиболее характерная модель программирования (хотя возможны и другие). Таблица 2.1 – Массивно-параллельные системы (MPP)
Таблица 2.2 – Симметричные мультипроцессорные системы (SMP)
Таблица 2.3 – Системы с неоднородным доступом к памяти (NUMA)
Таблица 2.4 – Параллельные векторные системы (PVP)
Таблица 2.5 – Кластерные системы
Классификация параллельных вычислительных систем, предложенная Т.Джоном, основана на разделении МВС по двум критериям: способу построения памяти (общая или распределенная) и способу передачи информации. Основные типы машин по классификации Т.Джона представлены в таблице 2.6. Здесь приняты следующие обозначения: p - элементарный процессор, M - элемент памяти, K - коммутатор, С - кэш-память. Параллельная вычислительная система с общей памятью и шинной организацией обмена (машина 1) позволяет каждому процессору системы видеть", как решается задача в целом, а не только те части, над
Таблица 2.6 – Классификация МВС по типам памяти и передачи сообщений которыми он работает. Общая шина, связанная с памятью, вызывает серьезные проблемы для обеспечения высокой пропускной способности каналов обмена. Одним из способов обойти эту ситуацию является использование кэш-памяти (машина 2). В этом случае возникает проблема когерентности содержимого кэш-памяти и основной. Другим способом повышения производительности систем является отказ от центральной памяти (машина 3). Идеальной машиной является вычислительная система, у которой каждый процессор имеет прямые каналы связи с другими процессорами, но в этом случае требуется чрезвычайно большой объем оборудования для организации межпроцессорных обменов. Определенный компромисс представляет сеть с фиксированной топологией, в которой каждый процессор соединен с некоторым подмножеством процессоров системы. Если процессорам, не имеющим непосредственного канала обмена, необходимо взаимодействовать, они передают сообщения через промежуточные процессоры. Одно из преимуществ такого подхода - не ограничивается рост числа процессоров в системе. Недостаток - требуется оптимизация прикладных программ, чтобы обеспечить выполнение параллельных процессов, для которых необходимо активное воздействие на соседние процессоры. Наиболее интересным вариантом для перспективных параллельных вычислительных комплексов является сочетание достоинства архитектур с распределенной памятью и каналами межпроцессорного обмена. Один из возможных методов построения таких комбинированных архитектур - конфигурация с коммутацией, когда процессор имеет локальную память, а соединяются процессоры между собой с помощью коммутатора (машина 9). Коммутатор может оказаться весьма полезным для группы процессоров с распределяемой памятью (машина 8). Данная конфигурация похожа на машину с общей памятью (машина 7), но здесь исключены проблемы пропускной способности шины. Недостатками классификации Т.Джона является скрытие уровня параллелизма в системе. Параллелизм любого рода требует одновременной работы, по крайней мере, двух устройств. Такими устройствами могут быть: арифметико-логические устройства (АЛУ), устройства управления (УУ). В ЭВМ классической архитектуры УУ и АЛУ образуют процессор. Увеличение числа процессоров или числа АЛУ в каждом из них приводит к соответствующему росту параллелизма. Наличие в ЭВМ нескольких процессоров означает, что одновременно (параллельно) могут выполняться несколько программ или несколько фрагментов одной программы. Работа нескольких АЛУ под управлением одного УУ означает, что множество данных может обрабатываться параллельно по одной программе. В соответствии с этим описание структур параллельных систем можно представить в виде упорядоченной тройки: <k,d,w>, где k - количество устройств управления, т.е. наибольшее количество независимо и одновременно выполняемых программ в системе; d - количество АЛУ, приходящихся на одно устройство управления; w - количество разрядов, содержимое которых обрабатывается одновременно (параллельно) одним арифметико-логическим устройством. Другая форма распараллеливания - конвейеризация, также требует наличия нескольких ЦП или АЛУ. В то время, как множество данных обрабатывается на одном устройстве, другое множество данных может обрабатываться на следующем устройстве и т.д., при этом в процессе обработки возникает поток данных от одного устройства (ЦП или АЛУ) к следующему. В течение всего процесса над одним множеством данных выполняется одно за другим n действий. Одновременно в конвейере на разных стадиях обработки могут находиться от 1 до n данных. Параллелизм и конвейеризацию можно рассматривать на трех различных уровнях, представленных в таблице 2.7. Шесть основных форм параллелизма, в широком смысле этого слова, позволяют построить схему классификации, в рамках которой можно описать разнообразие высокопроизводительных вычислительных систем и отразить их эволюцию. Таблица 2.7 – Классификация МВС по типу распараллеливания
3. ОСНОВНЫЕ КОНЦЕПЦИИ ПРОЕКТИРОВАНИЯ СУПЕРЭВМ В векторных суперЭВМ обеспечена предельная производительность для процессов скалярной и векторной обработки, которая присутствует в большинстве задач. Задачи, содержащие высокую степень внутреннего параллелизма, могут быть хорошо адаптированы к системам массового параллелизма. Реальные задачи и, тем более, пакеты задач содержат целый ряд алгоритмов, имеющих различные уровни параллелизма. Все это говорит о том, что вместо попыток приспособить все типы алгоритмов к одной архитектуре, что отражается на конфигурации архитектур и сопровождается не всегда корректными сравнениями пиковой производительности, более продуктивным является взаимодополнение архитектур в единой системе. Одним из первых примеров такой системы является объединение векторной системы Cray Y-XM с системой Cray T3D. Однако, это объединение с помощью высокоскоростного канала приводит к необходимости разбиения задач на крупные блоки и к потерям времени и памяти на обмен информацией. Ситуация в данном случае подобна той, которая существовала до появления векторных машин. Для решения задач, содержащих большое число операций над векторами и матрицами, использовались так называемые матричные процессоры, например, фирмы FSP, которые подключались к универсальной машине с помощью канала ввода/вывода. Интеграция скалярной и векторной обработки в одном процессоре наряду с обеспечением высокой скорости работы синхронного конвейера обеспечила успех векторных машин. Следующим логическим шагом является интеграция скалярной, векторной и параллельной обработки. Благодаря этому, может быть достигнута высокая реальная производительность за счет распределения отдельных частей программы по подсистемам с различной архитектурой. Естественно, это распределение работы должно быть поддержано аппаратно-программными средствами автоматизации программирования. Эти средства должны содержать возможность интерактивного вмешательства программиста на этапе анализа задачи и возможность моделирования или пробного запуска программы с измерением параметров эффективности. Следует подчеркнуть, что формы параллелизма в алгоритмах достаточно разнообразны, поэтому и их аппаратное отражение может быть различным. К наиболее простым можно отнести системы с одним потоком команд и множественными потоками данных, системы с множественными потоками команд и данных, систолические системы. Одним из многообещающих подходов, обеспечивающих автоматическое распараллеливание, является принцип потока данных, при котором последовательность или одновременность вычислений определяется не командами, а готовностью операндов и наличием свободного функционального арифметического устройства. Однако, и в этом случае степень реального распараллеливания зависит от внутреннего параллелизма алгоритма и, очевидно, нужны эффективные способы подготовки задач. Кроме того, для реализации таких систем необходимо создание ассоциативной памяти для поиска готовых к работе пар операндов и систем распределения вычислений по большому числу функциональных устройств. Аппаратная реализация параллельных подсистем полностью зависит от выбранных микропроцессоров, БИС памяти и других компонентов. В настоящее время по экономическим причинам целесообразно использовать наиболее высокопроизводительные микропроцессоры, разработанные для унипроцессорных машин. Вместе с тем, существуют подходы, связанные с применением специализированных микропроцессоров, ориентированных на использование в параллельных системах. Типичным примером является серия транспьютеров фирмы Inmos. Однако, из-за ограниченного рынка эта серия по производительности резко отстала от универсальных микропроцессоров, таких, как Alpha, Power PC, Pentium. Специализированные микропроцессоры смогут быть конкурентноспособными только при условии сокращения расходов на проектирование и освоение в производстве, что в большой степени зависит от производительности инструментальных вычислительных средств, используемых в системах автоматизированного проектирования. В различных вычислительных машинах использовались различные подходы, направленные на достижение, в первую очередь, одной из следующих целей: - максимальная арифметическая производительность процессора; - эффективность работы операционной системы и удобство общения с ней для программиста; - эффективность трансляции с языков высокого уровня и исключение написания программ на автокоде; - эффективность распараллеливания алгоритмов для параллельных архитектур. Однако, в любой машине необходимо в той или иной форме решать все указанные задачи. Отметим, что сначала этого пытались достичь с помощью одного или нескольких одинаковых процессоров. Дифференциация функций и специализация отдельных подсистем начала развиваться с появления отдельных подсистем и процессоров для обслуживания ввода/вывода, коммуникационных сетей, внешней памяти и т.п. В суперЭВМ кроме основного процессора (машины) включались внешние машины. В различных системах можно наблюдать элементы специализации в направлениях автономного выполнения функций операционной системы, системы программирования и подготовки заданий. Во-первых, эти вспомогательные функции могут выполняться параллельно с основными вычислениями. Во-вторых, для реализации не требуются многие из тех средств, которые обеспечивают высокую производительность основного процессора, например, возможность выполнения операций с плавающей запятой и векторных операций. В дальнейшем, при интеграции скалярной, векторной и параллельной обработки в рамках единой вычислительной подсистемы состав этих вспомогательных функций должен быть дополнен функциями анализа программ с целью обеспечения требуемого уровня параллелизма и распределения отдельных частей программы по различным ветвям вычислительной подсистемы. Появление суперЭВМ сопровождалось повышением их общей мощности потребления (выше 100 кВт) и увеличением плотности тепловых потоков на различных уровнях конструкции. Их создание не в последнюю очередь оказалось возможным, благодаря использованию эффективных жидкостных и фреоновых систем охлаждения. Является ли значительная мощность существенным признаком суперЭВМ? Ответ на этот вопрос зависит от того, что вкладывается в понятие суперЭВМ. Если считать, что суперЭВМ или, точнее, суперсистема - это система с наивысшей возможной производительностью, то энергетический фактор остается одним из определяющих эту производительность. По мере развития технологии мощность одного вентиля в микропроцессорах уменьшается, но при повышении производительности процессора за счет параллелизма общая мощность в ряде случаев растет. При объединении большого числа микропроцессоров в системе с массовым параллелизмом интегральная мощность и тепловыделение становятся соизмеримыми с аналогичными показателями для векторно-конвейерных систем. Однако, иногда в рекламных целях параллельные системы с небольшим числом процессоров сравниваются с суперкомпьютерами предыдущего или более раннего поколений, чтобы показать их преимущества в смысле простоты и удобства эксплуатации. Естественно, из такого некорректного сравнения нельзя сделать вывод о целесообразности создания современных суперсистем. Основным стимулом создания суперсистем являются потребности решения больших задач. В свою очередь, исследования и разработки по суперсистемам стимулируют целый комплекс фундаментальных и прикладных исследований, результаты которых используются в дальнейшем в других областях. Прежде всего, это касается архитектуры и схемотехники вычислительных машин, высокочастотных интегральных схем и средств межсоединений, эффективных систем отвода тепла. Не менее важны результаты по методам распараллеливания при выполнении отдельных операций и участков программ на аппаратном уровне, методам построения параллельных алгоритмов, языков и программных систем для эффективного решения больших задач. В развитии вычислительных средств можно выделить три основные проблемы: - повышение производительности; - повышение надежности; - покрытие семантического разрыва. Этапы развития вычислительных средств принято различать по поколениям машин. Характеристика поколения определяется конкретными показателями, отражающими достигнутый уровень в решении трех перечисленных проблем. Поскольку подавляющий вклад в развитие вычислительных средств всегда принадлежал технологическим решениям, основополагающей характеристикой поколения машин считалась элементная база. И действительно, переход на новую элементную базу хорошо коррелируется с новым уровнем показателей производительности, надежности и сокращения семантического разрыва. В настоящее время актуальным является переход к новым поколениям вычислительных средств. По сложившейся традиции решающая роль отводится технологии производства элементной базы. В то же время становится очевидным, что технологические решения утратили монопольное положение. Так, например, в ближайшей перспективе заметно возрастает значение проблемы покрытия семантического разрыва, что отражается в необходимости создания высокосложных программных продуктов и требует кардинального снижения трудоемкотси программирования. Эта проблема решается преимущественно архитектурными средствами. Роль технологии здесь может быть только косвенной: высокая степень интеграции создает условия для реализации архитектурных решений. В настоящее время одним из доминируюших направлений развития суперЭВМ являются вычислительные системы c MIMD-параллелизмом на основе матрицы микропроцессоров. Для создания подобных вычислительных систем, состоящих из сотен и тысяч связанных процессоров, потребовалось преодолеть ряд сложных проблем как в программном обеспечении (языки Parallel Pascal, Modula-2, Ada), так и в аппаратных средствах (эффективная коммутационная среда, высокоскоростные средства обмена, мощные микропроцессоры). Элементная база современных выcокопроизводительных систем характеризуется выcокой степенью интеграции (до 3,5 млн. транзисторов на кристалле) и высокими тактовыми частотами (до 600 МГц). В настоящее время все фирмы и все университеты США, Западной Европы и Японии, разрабатывающие суперЭВМ, ведут интенсивные исследования в области многопроцессорных суперЭВМ с массовым параллелизмом, создают множество их типов, организуют их производство и ускоренными темпами осваивают мировой рынок в этой области. Многопроцессорные ЭВМ с массовым параллелизмом уже сейчас существенно опережают по производительности традиционные суперЭВМ с векторно-конвейерной архитектурой. Системы с массовым параллелизмом предъявляют меньшие требования к микропроцессорам и элементной базе и имеют значительно меньшую стоимость при любом уровне производительности, чем векторно-конвейерные суперЭВМ. На ежегодной конференции в Чепел-Хилл (Сев.Каролина) представлен проект фирмы IBM, целью которого является создание гиперкубического параллельного процесора в одном корпусе. Конструкция, названная Execube, имеет 8 16-разрядных микропроцесоров, встроенных в кристалл 4Мбит динамического ЗУ (ДЗУ). При этом степень интеграци составляет 5 млн. транзисторов. Микросхема изготовлена по КМОП-технологии с тремя уровнями металлизации на заводе IBM Microelectronic (Ясу, Япония). Execube представляет собой попытку повышения степени интеграции процессора с памятью путем более эффективного доступа к информации ДЗУ. По существу, память превращается в расширенные регистры процессоров. Производительность микросхемы составляет 50 млн оп/с. Фирма CRAY Research обёявила о начале выпуска суперкопьютеров CRAY T3/E. Основная характеристика, на которой акцентировали внимание разработчики - масштабируемость. Минимальная конфигурация составляет 8 микропроцессоров, максимальная - 2048. По сравнению с предыдущей моделью T3/D соотношение цена/производительность снижена в 4 раза и составляет 60 долл/Мфлопс, чему способствовало применение недорогих процессоров DEC Alpha EVC, изготовленных по КМОП-технологии. Предполагаемая стоимость модели Т3/Е на основе 16 процессоров с 1-Гбайт ЗУ составит 900 тыс. долларов, а цена наиболее мощной конфигурации (1024 процессора, ЗУ 64 Гбайт) -39,7 млн. долларов при пиковой производительности 600 Гфлопс. Одним из способов дальнейшего повышения производительности вычислительной системы является объединение суперкомпьютеров в кластеры при помощи оптоволоконных соединений. С этой целью компьютеры CRAY T3/E снабжены каналами ввода/вывода с пропускной способностью 128 Гбайт/с. Потенциальные заказчики проявляют повышенный интерес к новой разработке фирмы. Желание приобрести компьютер изъявили такие организации как Pittsburgh Supercomputer Center, Mobile Oil, Департамент по океанографии и атмосферным исследованиям США. При этом подписано несколько контрактов на изготовление нескольких компьютеров 512-процессорной конфигурации. Среди японских компаний следует выделить фирму Hitachi, которая выпустила суперкомпьютер SR2201 с массовым параллелизмом, содержащий до 2048 процесоров. В основе системы переработанная компанией процессорная архитектура RA-RISC от фирмы Hewlett-Paccard. Псевдовекторный процессор функционирует под управлением ОС HP-UX/MPP Mash 3.0. В компьютере, кроме того, использована система поддержки параллельного режима работы Express, созданная корпорацией Parasoft и получившая название ParallelWare. Производительность нового компьютера составляет 600 Гфлопс. 4. КРАТКИЕ ХАРАКТЕРИСТИКИ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ СУПЕРКОМПЬЮТЕРОВ IBM RS/6000 SP
Cray T90
Cray X1
SGI Origin2000
SGI Altix3000
Sun HPC 10000 (StarFire)
Sun Fire 15K
NEC SX-5
NEC SX-6
Fujitsu VPP
Fujitsu PrimePower 2000
Fujitsu PrimePower 2500
AlphaServer
5. ДЕСЯТКА САМЫХ МОЩНЫХ КОМПЬЮТЕРОВ Данный список был взят из Top500 на ноябрь 2004 года. В списке представлены следующие данные по каждому компьютеру: - Rank – порядковый номер в списке Top500; - Site – организация, в которой установлен компьютер; - Country – страна - местоположение системы; - Year – год инсталляции или последнего серьезного обновления системы; - Computer – название (тип) компьютера, указанное поставщиком; - Processors – количество процессоров; - Manufacturer – производитель или поставщик компьютера; - Computer Family – семейство компьютеров; - Model – модель компьютера или вычислительного узла; - Installation Type – вид установки (исследовательская, академическая, правительственная, промышленная, закрытая); - Installation Area – область применения (погода, геофизика); - Nmax – размер задачи, необходимый для достижения Rmax; - Nhalf – размер задачи, необходимый для достижения половины Rmax; - Rmax – максимальная полученная производительность по LINPACK; - Rpeak – теоретическая пиковая производительность. Таблица 5.1 – десятка самых мощных компьютеров
ЗАКЛЮЧЕНИЕ Бурное развитие индустрии суперЭВМ послужило откликом на необходимость человечества в машинах, моделирующих процессы в реальном времени и выполняющих ряд других сложных задач. СуперЭВМ всегда являлись воплощением новейших научно-технических достижений и задавали темп и тенденции развития других видов машин. Пока рост производительности суперЭВМ отвечает увеличению сложности предстающих перед человеком проблем. Однако, можно заметить, что современная концепция развития вычислительных средств направлена, в основном, на количественное улучшение характеристик. Процесс разработки в некоторой степени можно назвать “выжиманием” максимума из уже созданного. Это подразумевает, что современный этап развития вычислительной техники уже вошел в состояние относительной стабильности, и каких-либо качественных измененний в пределах современной концепции едва ли придется ожидать. Очевидно, что за этапом стабильности, который может продлиться неопределенное время (но явно небольшое в масштабе постоянно ускоряющегося темпа жизни), последует “смутный период”, когда уровень возможностей суперЭВМ уже не сможет идти в ногу с потребностями человечества. Эта проблема породит необходимость в переходе на качественно новый уровень вычислительной техники. Еще одним большим вопросительным знаком в развитии суперЭВМ остается проблема практического отсутствия достаточно чётких и понятных стратегических направлений достижения очевидной цели – создание искусственной интеллектуальной системы, максимально соответствующей естественной, то есть Человеку. Внося существенную неопределённость в саму стратегию развития суперЭВМ, эта проблема порождает ситуацию, когда постоянно расширяющаяся в последнее время мозаика феноменальных научных достижений в области создания ЭВМ, лишённая чёткой связующей системы взглядов на описание и моделирование интеллектуальных систем, не только не уменьшает эту неопределённость, но и в ряде случаев создаёт предпосылки к её увеличению. Поэтому очень важным шагом, который следует сделать сейчас, является конкретизация стратегии дальнейшего развития суперЭВМ. СПИСОК ИСТОЧНИКОВ 1. Информационно-аналитический центр по параллельным вычислениям |