Реферат: Понятие и сущность сварки и сварочных работ
Название: Понятие и сущность сварки и сварочных работ Раздел: Промышленность, производство Тип: реферат |
Содержание 1.Основоположники сварки: Славянов Н.Г., Бенардос Н.Н., Патон Е.О…………..............3 2.Классификация способов сварки………………………………………………………...10 3.Источники тепла в каждом из способов, под действием которых плавится металл….12 4.История кафедры «ОиТСП» БГТУ……………………………………………………....14 Список использованной литературы……………………………………………………...16 1.Основоположники сварки: Славянов Н.Г., Бенардос Н.Н., Патон Е. Николай Гаврилович Славянов Николай Гаврилович Славянов родился 5 мая (23 апреля) 1854 г. в Задонском уезде Воронежской губернии. Окончив Воронежскую гимназию с золотой медалью, Николай Гаврилович поступил в 1872 г. в старейшее инженерное училище России — Петербургский горный институт, который блестяще окончил в 1877 г. с получением звания горного инженера 1-го разряда. Будучи студентом, он отлично выполнял учебные проекты, которые отличались оригинальностью и практической ценностью. Николай Гаврилович не был оторван и от общественной жизни передового студенчества того времени: он участвовал в 1877 г. в студенческих волнениях и некоторое время вынужден был скрываться от преследования жандармов. Практическая деятельность молодого инженера по окончании института началась с декабря 1877 г. на Боткинском металлургическом заводе на Урале, где с 1878 г., несмотря на небольшой инженерный стаж, Николай Гаврилович был назначен смотрителем механических фабрик. С 1881 по 1883 гг. Николай Гаврилович работал на Омутнинских заводах, а с декабря 1883 г. перешел на знаменитые Пермские пушечные заводы, где и проработал до конца жизни. Здесь он был сначала управителем орудийных и механических фабрик по изготовлению артиллерийских орудий и снарядов, затем помощником горного начальника, а с июля 1891 г. горным начальником Пермских пушечных заводов. Такое быстрое движение Николая Гавриловича по «служебной лестнице» на казенном заводе того времени — явление, чрезвычайно редкое для обычных инженеров. Это движение можно объяснить только инженерным талантом Николая Гавриловича. Он был выдающимся механиком, крупнейшим металлургом и электротехником своего времени и одновременно блестящим организатором. Успех в изобретательских и исследовательских работах Славянова, необычный в условиях дореволюционной России, помимо глубоких знаний металлургии и электротехники, объясняется его талантливостью и тесной связью с рабочим классом. Николай Гаврилович был простым в обращении с рабочими, любил их, советовался с ними при разработке своих изобретений. Николай Гаврилович умел работать как мастер на всех металлообрабатывающих станках. Небольшой токарный станок он имел у себя в рабочем кабинете для того, чтобы в любое время можно было изготовить любую деталь. Общение с рабочими в заводской и домашней обстановке позволило ему быстро воспитать кадры первых в мире мастеров электросварщиков. Живущие в Молотове в настоящее время старые рабочие, лично знавшие Николая Гавриловича, И. Г. Кетов и П. А. Скачков тепло отзываются о нем. Первые в мире электросварщики братья Павел и Семен Шиловы, Н. И. Гребенщиков, Л. В. Борчанинов были его друзьями и учителями других рабочих. Николай Гаврилович был руководителем большого предприятия и очень занятым человеком, но, несмотря на это, его энергия и трудоспособность позволяли ему творчески работать не только над своим детищем — сваркой, но и над усовершенствованием технологии орудийно-снарядного производства, по конструированию электромашин и дуговых фонарей для освещения и т. п. Особенно много и с любовью Николай Гаврилович работал над двумя своими изобретениями: 1) электрической отливкой металлов или, по современной терминологии, «электрической дуговой сваркой по способу Славянова» и 2) электрическим уплотнением металлических отливок. Первое изобретение получило всемирную известность и произвело переворот в методах обработки металлов. В то время под сваркой подразумевали лишь сварку давлением, т. е. кузнечную. Способы сварки плавлением тогда еще не были известны, и первый такой способ — изобретенную им дуговую электросварку — Николай Гаврилович называл «электрической отливкой», рабочего-электросварщика называл «электролитейщиком», а организованный им первый в мире электросварочный цех называл «электролитейной», К началу работ Н. Г. Славянова дуговая электросварка металлов была уже изобретена другим талантливым русским инженером — Н. Н. Бенардосом, разработавшим способ дуговой электросварки угольным электродом и добившимся практических результатов в ее применении. Н. Г. Славянов, заменив угольный электрод плавящимся металлическим, так резко повернул технологию сварки по способу Бенардоса на путь широкого практического применения, что этот способ сварки стал передовым технологическим процессом обработки металлов. Сварка по способу Славянова в настоящее время завоевала себе почетное место во всех странах мира. Сейчас существует много способов сварки металлов, но примерно 95% всех сварочных работ выполняется способом Славянова. Николай Гаврилович отработал свое изобретение до высокой степени совершенства и применил его на производстве. Таким образом, Н. Г. Славянов изобрел наиболее важный способ дуговой электросварки — сварку плавким металлическим электродом, разработал теоретически и практически электротехнические и металлургические основы этого способа, широко применил в промышленности новый процесс и опубликовал результаты своих работ с исчерпывающей полнотой. Николай Гаврилович обладал слабым здоровьем и не щадил себя на работе, поражая окружающих своей энергией и работоспособностью. Руководя в зимнее время сварочными работами на открытом воздухе, Николай Гаврилович сильно простудился, тяжело заболел и скончался 17 (5) октября 1897 г. на 44-м году жизни. Он преждевременно сошел в могилу, не успев дать родной стране всего того, что обещали его яркий талант инженера, исследователя, изобретателя, его глубокие и разносторонние знания. Николай Николаевич Бенардос Николай Николаевич Бенардос - российский изобретатель, создатель электрической дуговой сварки. По силе и глубине изобретательского таланта, широте интересов, чрезвычайной настойчивости в работе и трудоспособности. Бенардос занимает одно из первых мест среди изобретателей мира. Ему принадлежит около 200 оригинальных изобретений в различных областях техники, сельском хозяйстве, транспорте и т. д. Многие его идеи не потеряли своего значения и сейчас. Среди его изобретений: железные бороны и углубители, скороварки и молотильные машины, паровые ножницы и пневматическая поливалка, пароходные колёса с поворотными лопастями и охотничьи лодки, краны, турбины для гидроэлектростанций и пушка для метания канатов на терпящий бедствие корабль, летательные аппараты и станки для обработки металла и дерева, пневматические и вагонные тормоза и ветряной двигатель, десятки модификаций замков, подъёмников, патронов, пуль (в том числе пулю со смещённым центром) и мин. В последующие годы Николай Николаевич всё больше занимается работами в области электротехники. Ещё при постройке парохода Бенардосу часто приходилось соединять крупные металлические детали. Делалось это кузнечной сваркой, однако в мастерских Бенардоса не было больших нагревательных печей. Поэтому изобретатель попробовал греть кромки вольтовой дугой, до их проковки, при этом металл часто оплавлялся и соединял небольшие участки. К 1892 году Н. Н. Бенардос разработал электрическую сварку как с угольным, так и с металлическим электродами. Ему принадлежит идея и разработка устройства для сварки металлическим электродом на переменном токе, разработка сварки в струе газа, сварки наклонным электродом. Он первым начал применять различные флюсы и закрытую дугу, а также был основоположником механизации и автоматизации сварочного процесса. Патон Евгений Оскарович Патон Евгений Оскарович родился 4 марта 1870 года в Ницце (Франция), в семье дипломата. В 1894 году окончил Дрезденский политехнический институт Германия, а в 1896 году - Петербургский институт инженеров путей сообщения. 2. Классификация способов сварки. Классификация способов сварки по состоянию металла в зоне соединения: - к сварке давлением относят способы, при которых применяют только механическую или тепловую и механическую энергию совместно, В последнем случае сварка может происходить с оплавлением металла или без его оплавления; - к сварке давлением без нагрева относится холодная сварка, сварка взрывом, магнитно-импульсная сварка.. Для этих способов характерно высокое давление на детали в зоне соединения, в несколько раз превышающее предел текучести и даже предел прочности свариваемого металла при комнатной температуре, что обеспечивает совместное пластическое реформирование соединяемых поверхностей; - сварка давлением с нагревом без оплавления происходит при высоких температурах, переводящих металл в пластическое состояние.. Это снижает предел текучести металла и позволяет получить нужную для сварки деформацию при небольшом удельном осадочном давлении, в несколько раз меньшем предела текучести металла при комнатной температуре. Примерами способов сварки давлением с нагревом без оплавления могут служить кузнечная, диффузионная и ультразвуковая сварка, газопрессовая сварка, при которой нагрев производят пламенем от сжигания горючих газов в кислороде, сварка токами высокой частоты, нагревающими свариваемые кромки индуцируемыми в них вихревыми токами; - сварка давлением с нагревом и оплавлением характеризуется высокой температурой нагрева зоны соединения, превышающей температуру плавления свариваемого металла. На поверхности соединяемых деталей тонкий слой металла оплавляется. Под действием прилагаемого давления жидкий металл при некоторых способах сварки может выдавливаться из зоны соединения, например при сварке трением, контактной стыковой, сварке оплавлением. С жидким металлом выносятся за пределы зоны соединения загрязнения поверхности. Вокруг соединения образуется наплыв выдавленного металла - грат, который после сварки удаляется. Соединение образуется за счет деформации нагретых, но не расплавленных слоев металла, находившихся под оплавленным слоем. При контактной точечной и роликовой (шовной) сварке расплавленный металл остается в зоне соединения и после прекращения нагрева кристаллизуется между соединяемыми поверхностями под давлением, образуя сварное соединение. Сварка давлением незначительно изменяет химический состав, структуру и свойства металла. С ее помощью могут быть получены сварные соединения с такими же свойствами, как у основного металла без дополнительной обработки после сварки. Это одно из основных преимуществ сварки давлением перед сваркой плавлением. Но большинство способов сварки давлением (за исключением контактной сварки) требует создания особых условий (например, вакуума при диффузионной сварке, обеспечения безопасности работ при сварке взрывом), либо они применимы только для небольшой группы конструкций деталей. Поэтому сварка плавлением применяется чаще; - при сварке плавлением в зону соединения вводится только тепловая энергия. Металл в зоне сварки нагревается выше температуры его плавления, Здесь могут быть два способа: с плавлением основного металла и без плавления основного металла. При нагреве может быть расплавлен только вспомогательный металл (припой) с температурой плавления ниже, чем у основного металла соединяемых деталей. Основной металл в этом случае не расплавляют. Жидкий припой растекается по поверхности соединения,- смачивает ее и. кристаллизуясь при охлаждении, образует паяный шов. Этот процесс называют пайкой. В большинстве способов сварки плавлением с помощью различных источников тепла небольшой участок соединения деталей нагревают выше температуры плавления основного металла. Образуется ограниченный твердым металлом объем жидкого металла,- который называют сварочной ванной. По мере перемещения источника тепла вдоль свариваемого стыка в головной части сварочной ванны основной металл расплавляется,- а в хвостовой части ванны металл затвердевает, образуя сварной шов. Для усиления сварного шва в сварочную ванну может подаваться расплавляемый материал электрода или присадочный материал. Способы сварки плавлением отличаются друг от друга источниками тепла и защитой зоны сварки от окружающей атмосферы; - при газопламенной (газовой) сварке источник тепла — это пламя от сжигания горючего газа или пара в кислороде. Шов защищают продукты сгорания этого газа. Наиболее распространена дуговая сварка, при которой нагрев производят электрической сварочной дугой, В зависимости от способа защиты металла в зоне нагрева различают несколько способов дуговой сварки, При дуговой сварке штучными электродами при плавлении обмазки образуется шлак, который покрывает металл шва. Зона сварки защищается при этом также парами металла и компонентов покрытия. Защиту осуществляют инертными (аргон, гелий) или активными (углекислый газ, водяной пар) газами или их смесями. Эти способы дуговой сварки называют сваркой в защитных газах, или газоэлектрической сваркой. Она может выполняться плавящимся или неплавящимся электродом. С помощью защитного газа можно сжать электрическую дугу в узком канале горелки так, что дуга станет высококонцентрированным источником тепла, В таком случае говорят о сварке сжатой дугой, или о плазменной сварке. Хорошее качество шва и высокую производительность обеспечивает дуговая сварка под флюсом. На стык деталей заранее или в процессе сварки насыпают слой порошка флюса толщиной больше длины дуги. Дуга расплавляет флюс и горит под пленкой жидкого шлака и слоем порошка флюса в атмосфере паров металла и компонентов флюса. Шлак надежно закрывает шов, образуя шлаковую корку. Для соединения деталей большой толщины применяют электрошлаковую сварку, при которой для расплавления основного и электродного металлов используют теплоту, выделяющуюся при прохождении электрического тока через жидкий шлак, защищающий сварочную ванну от воздуха. При сварке плавлением используют также высококонцентрированные источники тепла: электронный луч и световой луч, излучаемый оптическим квантовым генератором-лазером. Электронно-лучевая сварка основана на использовании теплоты, выделяющейся при торможении острофокусированного потока ускоренных электрическим полем электронов в результате их столкновений со свариваемой поверхностью. Сварку производят в вакууме, который защищает нагретую зону. Лазерная сварка происходит в результате передачи свариваемой поверхности энергии светового луча, сфокусированного на этой поверхности оптической системой, Защиту зоны сварки производят инертными либо активными газами. Выделение теплоты в результате химических реакций между окислом металла и другим металлом, более активным по отношению к кислороду, используют при термитной сварке. Термит — это смесь порошков окиси-закиси железа Fe О и алюминия или магния. Если ее подогреть до температуры воспламенения (8оо °С), произойдет реакция 3 Fe 3 04 + 8 Al —> 4^\РЪ + 9 Fe + 8 5° ккал (з559 кДж) (на i кг смеси) В результате реакции образуются железо и окись алюминия, которая всплывает на поверхность, образуя шлак,- Продукты реакции нагреваются до температуры 3000 °С. Термитная сварка сможет осуществляться методом промежуточного литья, когда расплавом железа заливают стык стальных или чугунных деталей, заключенный в литейную форму. Это сварка плавлением. Но термитную сварку выполняют еще и впритык, когда жидким металлом и шлаком только нагревают торцы соединяемых деталей, а соединение получают, сдавливая разогретые торцы и деформируя их. Это сварка давлением с нагревом без оплавления. Термитная сварка применяется в основном для соединения рельсов. Она малопроизводительна, ее трудно автоматизировать. Поэтому ее применяют редко. Таким образом, при всех способах сварки под действием энергии активации металл в зоне соединения изменяется, происходит его деформация и (или) правление с последующим затвердеванием, металл может взаимодействовать с окружающей атмосферой, компонентами шлаков, происходит изменение его структуры. Поэтому сварные соединения, как правило, отличаются от основного металла структурой, химическим составом металла и механическими свойствами. Особенно велики эти отличия при сварке плавлением. 3. Источники тепла в каждом из способов, под действием которых плавится металл . Сварка - процесс получения неразъемного соединения посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместном действии того или другого. Обычно применяется для соединенияметаллов, их сплавов или термопластов, а также в медицине. Для производства сварки используются различные источники энергии:электрическая дуга, газовое пламя, лазерное излучение, электронный луч,трение, ультразвук. Классификацию сварки металлов устанавливают по физическим, техническим и технологическим признакам.Физические признаки, в зависимости от формы энергии, используемой дляобразования сварного соединения, подразделяют на три класса:
К техническим признакам относятся: способ защиты металла в зоне сварки, непрерывность сварки, степень механизации сварки. Технологические признаки устанавливаются по ГОСТу для каждого способа сварки отдельно. Термический класс:
· электрошлаковая сварка - источником тепла служит флюс, находящийся между свариваемыми изделиями, разогревающийся проходящим через него электрическим током. При этом теплота, выделяемая флюсом, расплавляет кромки свариваемых деталей и присадочную проволоку. Способ находит свое применение при сварке вертикальных толстостенных изделий; · плазменная сварка - источником тепла является плазменная струя, получаемые при ионизации рабочего газа в промежутке между электродами, одним из которых может быть свариваемое изделие либо оба электрода находятся в плазменной горелке - плазмотроне. Струя плазмы сжимается и ускоряется под действием электромагнитных сил, оказывая на свариваемое изделие как тепловое так и газодинамическое воздействие. Помимо сварки этот способ часто используется для технологических операций наплавка, напыление и резка; · электронно-лучевая сварка - источником теплоты является электронный луч, получаемый за счёт термоэлектронной эмиссии с катода электроннолучевой пушки. Сварка ведётся в высоком вакууме 10 — 10 Па в вакуумных камерах. Известна также технология сварки электронным лучом в атмосфере нормального давления, когда электронный луч покидает область вакуума непосредственно перед свариваемыми деталями. Сварка электронным лучом имеет значительные преимущества: Высокая концентрация ввода теплоты в изделие, которая выделяется не только на поверхности изделия, но и на некоторой глубине в объеме основного металла;
· сварка с закладными нагревателями - применяется для сварки полиэтиленовых труб. Источником теплоты служит элементы сопротивления запаянные в сварной муфте. При сварке с закладными электронагревателями полиэтиленовые трубы соединяются между собой при помощи специальных пластмассовых соединительных деталей, имеющих на внутренней поверхности встроенную электрическую спираль из металлической проволоки. Получение сварного соединения происходит в результате расплавления полиэтилена на соединяемых поверхностях труб и деталей (муфт, отводов, тройников седловых отводов) за счёт тепла, выделяемого при протекании электрического тока по проволоке спирали, и последующем естественном охлаждении соединения. Термомеханический класс: · контактная сварка - при сварке происходят два последовательных процесса: нагрев свариваемых изделий до пластического состояния и их совместное пластическое деформирование. Основными разновидностями контактной сварки являются: точечная контактная сварка, стыковая сварка, рельефная сварка, шовная сварка; · диффузионная сварка - сварка осуществляется за счёт диффузии — взаимного проникновения атомов свариваемых изделий при повышенной температуре. Сварку проводят в вакуумной установке, нагревая места соединения до 800 °С. Вместо вакуума может быть использована среда защитных газов. Методом диффузной сварки можно пользоваться при создании соединений из разнородных металлов, отличающихся по своимфизико-химическим свойствам, изготавливать изделия из многослойных композитных материалов;
· сварка высокочастотными токами - источником теплоты служит высокочастотный ток проходящий между свариваемыми изделиями. При последующем пластическом деформировании и остывании образуется сварное соединение; · сварка трением - если жестко закрепить одну деталь, а другую, прижав к ней, вращать, то за счет механической работы сил трения детали в месте прикосновения сильно разогреются, оплавятся и сварятся. Способ достаточно экономичный. Автоматизированные установки для сварки трением потребляют электроэнергии в 10 раз меньше, чем установки для контактной сварки. Соединяются детали за считанные секунды, при этом практически нет газовых выделений. Механический класс: · сварка взрывом - сварка осуществляется сближением атомов свариваемых
4. История кафедры «ОиТСП» БГТУ Развитие и широкое применение в промышленности и строительстве электросварка получила после Великой Октябрьской социалистической революции. При выполнении первого пятилетнего плана возникла острая потребность в специалистах-сварщиках. В связи с этим в начале 30-х годов в Москве и Ленинграде были основаны специальные сварочные учебные институты, на базах которых затем были организованы кафедры сварочного производства в Московском высшем техническом училище им. Н.Э.Баумана и Ленинградском политехническом институте. В 1925 г.в Днепропетровском горном институте был произведен выпуск инженеров-электромехаников по .сварочному оборудованию. Устроителем подготовки был проф. В.П.Никитин. Впервые в СССР подготовка инженеров сварочного производства была организована проф. В.П.Вологдиным в Дальневосточном политехническом институте. Там в 1930 г. состоялся первый выпуск инженеров-сварщиков, а в МВТУ им.Н.Э.Баумана - 1932 г. Организатороми подготовки были проф. Г.А.Николаев, К.К.Хренов, В.П.Никитин и др. В ЛПИ под руководством проф. Н.О.Окерблома, А.А.Алексеева, В.П.Вологдина впервые выпустили инженеров-сварщиков в 1934 году. Подготовительная работа по созданию кафедры сварки в Брянском институте транспортного машиностроения относится к тому периоду развития сварки ,когда она из искусства варить превращалась в управляемый технологический процесс. 1 января 1932 г. в Орджоникидзеградском машиностроительном институте (ныне БГТУ) была организована электросварочная лаборатория. В том же 1932 г. Н.И. Трофимов начал читать лекции в нашем институте по дисциплине «Сварка металлов» В 1933г. при посещении института тогда ещё крупным специалистом в области сварочного дела профессором В.П.Вологдиным возник вопрос о целесообразности организации подготовки в нашем институте инженеров сварочной специальности. 8 октября 1934 г. в институте состоялось специальное совещание, на котором был всесторонне обсужден вопрос об организации подготовки инженеров сварочной специальности. В первой половине 1936 г. по решению Государственного Ученого совета нашему институту было предложено начать подготовку инженеров сварочной специальности. Организация кафедры и всего учебного процесса были поручены Г.Д. Шевченко, ученику проф. В.П.Вологдина. большую роль в решении организационно-методических вопросов в период становления кафедры оказывало Московское высшее техническое училище им. Н.Э.Баумана. За период с 1936 по 1939гг. была укреплена материально-техническая база кафедры. Были получены основные типы машин для контактной сварки, сварочные преобразователи СМГ-1 для дуговой сварки на постоянном токе, сварочные головки для автоматической сварки САГ-1, оборудование для газовой сварки, кислородной резки (ручной и автоматической), установка для рентгеновского контроля сварных соединений РУ-200. Это дало возможность весной 1939 г. осуществить первый выпуск инженеров сварочной специальности в количестве 53 человек. С началом Великой Отечественной войны изменилась жизнь кафедры, значительная часть студентов и преподавателей ушла защищать Родину. В1941 институт был эвакуирован в город Нижний Тагил. В 1944 г. институт возвращается в Бежицу (ныне Бежицкий район г. Брянска). В 1968-1970гг. кафедру возглавил выпускник БИТМа 1950 доктор технических наук, профессор Г.И. Лесков. Он развернул новое научное направление кафедры «Изучение физических процессов в электрической дуге и повышение устойчивости её горения». Под руководством Лескова была восстановлена очная аспирантура по сварочной специальности. Другим важным направлением научной деятельности кафедры является исследование методов наплавки, разработка наплавочных материалов с целью повышения износостойкости рабочих поверхностей и восстановление размеров изношенных деталей. Кафедра имеет хорошую материально-техническую базу и квалифицированные кадры для подготовки специалистов. Лаборатории оснащены современным оборудованием для автоматической и полуавтоматической сварки под флюсом и в защитных газах, микроплазменной. За годы существования кафедра выпустила свыше 2000инженеров, из них многие стали крупными руководителями и организаторами производства, известными учёными. Коллектив кафедры сварки БГТУ прилагает все усилия для решения одной из актуальных задач- повышение качества подготовки специалистов. Список используемой литературы
|