Реферат: Лінії передач для інтегральних схем
Название: Лінії передач для інтегральних схем Раздел: Рефераты по астрономии Тип: реферат | ||||||||||
Лекція 9 Лінії передач для інтегральних схем. В інтегральній електроніці використовуються в основному плоскі лінії. 1. Симетрично – смушкова лінія (ССЛ): вона відкрита, тому має втрати.
2. Не симетрично – смушкова лінія (НСЛ):
3. Мікросмушкова лінія (microstrip line) – МСЛ. Тут ємність дуже велика, енергія сконцентрована. Підкладка з діелектрика . Лінія двоповерхова – це не дуже зручно. 4. Щілинна лінія (slot line). Вона є одноповерховою: 5. Компланарний хвильовід – все в одній площині. Поля в несиметрично – смушковій лінії. Складність розв’язання цієї задачі полягає в тому, що граничні умови тут – нерегулярні; не можна покласти, що на поверхні . Використовують наближені методи; зокрема конформних відображень.
Наближення : Існує Т – хвиля (нехтуємо випромінюванням). Використаємо симетрію задачі. Цікавимося випромінюванням на краю. Треба розв’язати задачу: знайти розв’язок рівняння Лапласа у верхній площині з напівнескінченним розрізом. Використаємо метод конформних відображень: тут застосовується інтегральне конформне перетворення Кристофеля – Шварца. Розглянемо ламану лінію, що в точці а змінює напрямок на кут : . Якщо є два зломи, то , де , , . В нашій конкретній задачі ламану можна подати у вигляді: Кут відраховується проти годинникової стрілки від наступного напрямку до попереднього. , , перенесемо точки: . Проінтегрувавши отримаємо шукане перетворення: . Константи та визначаються з умов: , отже . Умовою ми не можемо скористатися, бо одержимо . Використаємо фізичні міркування:
Загальний вид відображення ; бо область інваріанта відносно зсуву вздовж ОХ (трансляційна симетрія). Зрозуміло, у нашій задачі область при . При перетворення набуває вигляду: . Порівнюючи з , . Отже шукане перетворення: . Для того, щоб знайти розв’язок у верхній півплощині, необхідно перетворити її в конденсатор, використовуючи перетворення зворотне до : . Тоді відображення, що перетворить вихідну область () (край конденсатора) у конденсатор (), має вигляд: . Тепер необхідно розв’язати рівняння у плоскому конденсаторі та скористатись зворотнім перетворенням: , . .
Таким чином: . Запишемо рівняння еквіпотенційних поверхонь: . ЕПП переходить в . ЕПП переходить в . Таким чином, отримаємо таку картину еквіпотенціальних поверхонь:
Тепер знайдемо електричні силові лінії. Ці лінії перпендикулярні ЕПП, однак ми знайдемо їх в аналітичний спосіб. Очевидно, в () такі силові лінії, як на малюнку. Знайдемо образ цих ліній у просторі (). Наприклад, ,. Отримаємо картину ЕП в ():
Часто важливо знайти напруженість поля в певній точці: . |