Контрольная работа: Расчет электрической цепи постоянного тока

Название: Расчет электрической цепи постоянного тока
Раздел: Рефераты по физике
Тип: контрольная работа

Задание на выполнение работы

Схема исследуемой цепи:

Рис. 1. Принципиальная схема исследуемой цепи

Таблица 1. Параметры элементов схемы

Элемент схемы E1 E2 R1 R2 R3 R4 R5 R6 R7 R8
U, V 20 47
RF , W 51 130 175 240 300 140 179 500

Пункт 1. Рассчитаем значения токов ветвей методом уравнений Кирхгофа. Для расчета используем схему, приведенную на рис. 1. Данная схема содержит 5 узлов, 8 ветвей, 2 источника ЭДС и не содержит источников тока. Подсчитаем количество уравнений системы, составленной по методу Кирхгофа.

Количество уравнений для первого закона равно:

где Nу – количество узлов рассматриваемой принципиальной схемы.

Количество уравнений для второго закона равно:


,

где Nв , NT – количество узлов и источников тока соответственно.

Подставив значения, получаем, что количество уравнений, составленных по первому закону равно 4, а по второму также 4. Приняв положительное направление обхода контуров и направления токов в ветвях, отметим это на схеме (рис. 2.).

Рис. 2

Составим систему уравнений, основываясь на направлениях токов и положительном направлении обхода.


Подставив значения сопротивлений резисторов из таблицы 1, сформируем матричное уравнение вида AX= B, где

Решая указанную систему, получаем искомую матрицу Х, которая содержит значения токов.

Найденные токи перечислены в таблице 2.

Таблица 2

Номер тока 1 2 3 4 5 6 7 8
Значение тока, mA 11 -16 2 7 -9 -10 6 2

Пункт 2. Рассчитаем токи в исходной схеме по методу контурных токов. Количество уравнений для данного метода равно количеству уравнений для второго закона Кирхгофа, которое было подсчитано ранее. Исследуемая принципиальная схема содержит 4 контура, в которых действуют 4 контурных тока, направления которых показаны на рис. 3.

Рис. 3. Условные положительные направления контурных токов

Учитывая эти положительные направления можно записать систему уравнений по методу контурных токов в общем виде:

Собственные сопротивления контуров:

Общие сопротивления контуров:


Контурные Э.Д.С.:

Матрицы, составленные по представленным данным имеют вид:

Решив систему, получим:

Зная контурные токи, находим токи в ветвях:


Сравнивая значения токов, полученные методом контурных токов и методом уравнения Кирхгофа, видим, что они практически совпадают.

Пункт 3. Рассчитаем токи методом узловых напряжений. Схема с нумерацией узлов и условными положительными направлениями узловых напряжений показана на рис. 4.

Рис. 4. Направления узловых напряжений.

Анализируемая схема содержит четыре независимых узла, значит количество уравнений будет равно количеству уравнения первого закона Кирхгофа, а общий вид системы для определения узловых напряжений будет таким:


Собственные проводимости узлов:

Общие проводимости узлов:

Узловые токи:


Матрицы имеют вид:

Решив систему, получим:

Зная узловые напряжения, найдем токи ветвей. Для этого воспользуемся вторым законом Кирхгофа:


Найденные токи совпадают с рассчитанными ранее другими методами.

Пункт 4. Преобразование заданной схемы в трёхконтурную.

Рис. 5. Преобразование заданной схемы в трёхконтурную

Изменяются параллельно соединённые участки цепи одним эквивалентным.


Пункт 5. Рассчитаем токи в исходной схеме по методу контурных токов. Схема содержит три независимых контура с тремя контурными токами, она изображена на рис. 6.

Рис. 6. Нахождение тока в преобразованной цепи

Необходимо составить систему уравнений для первого и второго уравнения Кирхгофа.

Составляем матрицу для получения нужных токов.

Получаем искомые токи:

Пункт 6. Расчёт тока в заданной ветке методом эквивалентного генератора.

После разрыва исследуемой ветви схема примет вид, показанный на рис. 7.

Рис. 7.

После разрыва ветви схема упрощается: резисторы теперь образуют одну ветвь с током .

Рассчитаем напряжение холостого хода, составив уравнение второго закона Кирхгофа:

.

Для того, чтобы рассчитать , необходимо знать токи знать токи и . После разрыва схема содержит 3 независимых контура и 4 независимых узла. Поэтому рассчитаем токи методом контурных токов. Система уравнений в общем виде будет такой:

Собственные сопротивления контуров:

Общие проводимости узлов:

Узловые токи:

Матрицы имеют вид:

,


Ее решение: Искомые токи

Теперь можно найти:

Для расчета исключим из схемы источники энергии, оставив их внутренние сопротивления. Для этого имеющиеся в схеме источники напряжения необходимо замкнуть накоротко. Схема без источников имеет вид (рис. 8):

Рис. 8. Схема для определения

В принципиальной схеме резисторы , и соединены треугольником. Заменим это соединение эквивалентной звездой , , . Имеем:


После замены схема имеет вид (рис. 9):

Рис. 9.

Проведём нужные преобразования ещё раз:

Рис. 10.

После сделанных преобразований мы имеем еще один условный треугольник ,

Рис. 11.


Эквивалентное сопротивление генератора можно найти следующим способом:

Для проверки правильности расчетов определим по формуле эквивалентного генератора ток в ветви с в исходной схеме:

Этот ток практически совпадает с найденным ранее, что свидетельствует о буквальной правильности вычислений.

Ток Метод уравнений закона Кирхгофа Метод контурных токов Метод узловых напряжений Метод уравнений Кирхгофа для преобразованной схемы Метод эквивалентного генератора
I1 0,11 0,11 0,11
I2 -0,16 -0,16 -0,12
I3 0,02 0,02 0,02 -0,02
I4 -0,07 -0,07 0,07 -0,1 -0,07
I5 -0,1 -0,1 -0,1
I6 -0,01 -0,01 -0,01 0,01
I7 0,06 0,06 0,06 0,06
I8 0,02 0,02 0,02
I9 0,15
I10 0,11