Реферат: Структура оптимальных устройств обнаружения
Название: Структура оптимальных устройств обнаружения Раздел: Рефераты по коммуникации и связи Тип: реферат |
2. Структура оптимальных устройств обнаружения. 2.1. Весовой критерий; критерий Неймана-Пирсона. На практике вместо совместных вероятностей
Поскольку решения, соответствующие одному и тому же условию являются взаимоисключающими, справедливы равенства
Таким образом, можно записать: где
Очевидно, что при любых При сравнении оптимального решающего правило с любым другим справедливо неравенство Описанный весовой критерий, являющийся видоизменением байесовского, но не требующий знания априорных вероятностей наличия и отсутствия сигнала и стоимости ошибок, широко используется при анализе и синтезе систем обнаружения и носит название критерия Неймана-Пирсона. Решающее правило, оптимальное по этому критерию, соответственно именуют правилом Неймана-Пирсона. Наряду с критерием Неймана-Пирсона находит применение ряд других критериев. При неизвестных априорных вероятностях
При известных
Если неизвестны и стоимости ошибок и априорные вероятности, применяют критерий максимального правдоподобия; в соответствии с этим критерием выбирается гипотеза, для которой больше условная вероятность функция правдоподобия наблюдавшейся выборки
Важно подчеркнуть, что перечисленные критерии не противоречат, а дополняют друг друга, более того, во многих практически важных случаях оптимизация по любому из этих критериев приводит к одной и той же структуре решающего правила. 2.2. Структура оптимального решающего правила. Рассмотрим структуру правила, оптимального по весовому критерию ( под структурой решающего правила понимается последовательность математических и логических операций , которые необходимо выполнить над выборочными значениями В соответствии с весовым критерием мы должны найти правило, обеспечивающее выполнение условия Запишем вероятности
Здесь Весовой критерий при этом может быть представлен в виде Таким образом, оптимальный в смысле весового критерия обнаружитель представляет устройство вычисления отношения правдоподобия наблюдаемой выборки и сравнения его с фиксированным порогом Отношение правдоподобияя, т.е. отношение функций правдоподобия Решающей статистикой (не путать со статистикой, как областью математической и экономической наук) называют функцию выборочных значений, размерность которой меньше, чем у исходной выборки. Очевидно, что чем меньше размерность решающей статистики, тем проще ее использовать для построения решающего правила. Наилучшей с этой точки зрения является одномерная статистика, например, выборочное среднее В более общем случае это свойство отношения правдоподобия может нарушаться, однако и в этом случае квазиоптимальные алгоритмы часто используют статистику отношения правдоподобия. Можно также показать, что в случае различения простых гипотез полученная структура обнаружителя – “вычислитель отношения правдоподобия + постоянный порог” - является оптимальной не только весового критерия, но и для других, рассмотренных нами: Неймана-Пирсона, максимума апостериорной вероятности, максимального правдоподобия, минимаксного. Различие этих критериев выражается только в величине порога Очевидно, что для рассмотренной структуры решающего правила его оптимальность не нарушится, если отношение правдоподобия заменить любой монотонной однозначной функцией от него (при условии соответствующего пересчета значения решающего порога). Часто в качестве такой функции используют логарифм отношения правдоподобия Самостоятельную роль в теории принятия статистических решений играет математическое ожидание логарифма отношения правдоподобия Необходимо подчеркнуть. Что операция расчета логарифма отношения правдоподобия может реализовываться с помощью устройств согласованной фильтрации (известно, что выходной эффект фильтра, согласованного с наблюдаемой выборкой, пропорционален логарифму отношения правдоподобия этой выборки). На практике оптимальная обработка выборки обычно разделяется на два этапа: согласованную фильтрацию одиночного сигнала и расчет отношения правдоподобия для последовательности отсчетов , наблюдаемых на выходе согласованного фильтра. Поэтому мы под формированием решающей статистики будем понимать расчет отношения правдоподобия (или его логарифма) для выборки, наблюдаемой на выходе фильтра (коррелятора) согласованного с одиночным сигналом. 2.3. Расчет отношения правдоподобия для простых гипотез. Проведем расчет отношения правдоподобия при простых гипотезах, когда соответствующие функции правдоподобия В качестве помехи, присутствующей на выходе оптимального приемника будем рассматривать узкополосный гауссовский шум, среднеквадратическое отклонение которого s
также считается известным. Для удобства будем рассматривать амплитуды принятого и расчетного сигналов, нормированные относительно с.к.о. шума: Известно, что оптимальный фильтр такого сигнала представляет собой коррелятор, на опорный вход которого подается полная (с точностью до начальной фазы Соответствующие гипотезам
Соответственно, отношение правдоподобия и его логарифм
Последнее выражение определяет функциональное преобразование, которому должны подвергаться отсчеты амплитуды и фазы на выходе согласованного фильтра при расчете логарифма отношения правдоподобия выборки ( На практике для удобства в качестве выходного эффекта оптимального фильтра обычно рассматривают напряжение на выходе амплитудно-фазового
детектора
Очевидно, что в этом случае Рассчитаем математическое ожидание статистики (2.3), т.е. ее среднее приращение (информацию Кульбака-Леблера), приходящееся на один отсчет Используя известную формулу плотности вероятности произведения двух случайных величин, нетрудно убедиться, что при наличии сигнала величина
мат. ожидание которого
Таким образом, для полностью известного сигнала абсолютная величина информации Кульбака-Леблера при гипотезе и альтернативе одинакова и равна квадрату эффективного значения |