Реферат: Умовний екстремум Метод множників Лагранжа Метод найменших квадратів

Название: Умовний екстремум Метод множників Лагранжа Метод найменших квадратів
Раздел: Рефераты по астрономии
Тип: реферат

Пошукова робота на тему:

Умовний екстремум. Метод множників Лагранжа. Метод найменших квадратів.

П лан

  • Умовний екстремум
  • Необхідні умови
  • Метод множників Лагранжа
  • Знаходження функції на основі експериментальних даних за методом найменших квадратів

1 . Умовний екстремум

У попередніх параграфах були розглянуті максимуми і мінімуми функції в припущенні, що ті змінні, від яких функція залежить, є незалежними. В цих випадках максимуми мінімуми називаються безумовними. Але у багатьох задачах потрібно знаходити екстремуми функції, аргументи якої задовольняють деяким додатковим умовам – зв’язку. В цих випадках аргументи функції не є незалежними. Екстремуми такого типу називаються умовними. Як приклад, наведемо задачу про знаходження екстремуму функції

за умови, що її аргументи задовольняють умові зв’язку

.

У даній задачі екстремуми функції знаходять не на всій площині, а лише на прямій .

Нехай потрібно знайти максимуми і мінімуми функції

(6.89)

при

(6.90)

За наявності умови (6.90) із двох змінних і незалежною буде лише одна, наприклад , оскільки визначається із рівності (6.90) як функція . Якщо із (6.90) знайти явну залежність від і підставити її в (6.89), то одержимо функцію однієї змінної , яку потрібно дослідити на екстремум. Але розв’язання рівняння (6.90) відносно однієї із змінних може бути важким або взагалі неможливим. Тому зупинимося на особливому методі розв’язання задачі на умовний екстремум – методі невизначених множників Лагранжа.

У точках екстремуму похідна має дорівнювати нулю. Враховуючи, що є функція від , знаходимо .

Отже, в точках екстремуму

. (6.91)

Із рівності (6.90) маємо

(6.92)

Домножимо рівність (6.92) на невизначений множник і додамо її з рівністю (6.91), одержимо

.

або

(6.93)

(6.93) перетворювалася на нуль: Рівність (6.93) виконується в усіх точках екстремуму. Доберемо множник так, щоб в точках екстремуму функції друга дужка у рівності

.

Тоді в точках екстремуму виконуються три рівняння:

(6.94)

з трьома невідомими . Із системи (6.94) визначаємо і , що відіграє лише допоміжну роль і в подальшому не потрібне.

Ліві частини рівнянь (6.94) є частинними похідними функції

,

яка називається функцією Лагранжа. Система (6.94) співпадає з умовами безумовного екстремуму функції .

Із виводу рівнянь (6.94) випливає, що вони є лише необхідними умовами умовного екстремуму.

Зауваження. Описаний метод поширюється на дослідження умовного екстремуму функції будь-якого числа змінних.

Нехай потрібно знайти максимуми і мінімуми функції змінних

за умови, що змінні зв’язані рівняннями:

(6.95)

Складемо функцію Лагранжа

і прирівняємо до нуля її частинні похідні по :

(6.96)

Із рівнянь (6.95) і (6.96) знаходимо координати критичних точок і допоміжних невідомих . Системи рівнянь (6.95) і (6.96) є необхідними умовами умовного екстремуму.

Приклад. За яких розмірів прямокутний паралелепіпед має найбільший об’єм, якщо його повна поверхня має площу ?

Р о з в ’ я з о к. Нехай довжина сторін паралелепіпеда дорівнюють і . Його об’єм , а площа поверхні . Потрібно знайти найбільше значення функції за умови .

Складаємо функцію Лагранжа

і прирівнюємо до нуля її частинні похідні:

, ,

, .

Звідси знаходимо . Точка є критичною точкою функції . Оскільки поставлена задача має певний розв’язок, а критична точка лише одна, то в цій критичній точці буде екстремум.

Шуканий паралелепіпед – куб із стороною .

2 . Знаходження функції на основі експериментальних даних

за методом найменших квадратів

У різних областях людської діяльності широке розповсюдження мають формули, одержані на основі обробки спостережень або експериментів. Такі формули називаються емпіричними.

Нехай на основі експерименту потрібно встановити функціональну залежність величини від величини : .

В результаті одержано значень функції при відповідних значеннях аргументів і результати записані так:

Вид функції встановлюється або із теоретичних міркувань, або на основі аналізу графіка функції . Для цього слід побудувати в прямокутній декартовій системі координат точки, відповідні експериментальним значенням. Ці точки в дальшому будемо називати експериментальними. Якщо експериментальні точки розміщені на координатній площині так, як зображено на рис. 6.15, то доречно будувати залежність від у вигляді лінійної функції . Якщо експериментальні точки розміщені так, як показано на рис. 6.16, то функцію будемо шукати у вигляді .

При вибраному вигляді функції залишається добрати параметри так, щоб вони якнайкраще і описували

Рис.6.13 Рис.6.14

розглядуваний процес. Найпоширенішим методом розв’язання даної задачі є метод розв’язання даної задачі є метод найменших квадратів.

Нехай експериментальні точки групуються навколо прямої (див. рис. 6.13). Тоді

(6.97)

де і - параметри, які потрібно знайти.

Розглянемо експериментальну точку і точку з такою самою абсцисою, але яка лежить на прямій. Її координати . Різницю ординат цих точок

, (6.98)

що являє собою відхилення точки від прямої , назвемо похибкою.

Доберемо параметри і так, щоб сума квадратів похибок

(6.99)

була найменшою.

Підставимо в (6.99) вирази помилок (6.98), одержимо

(6.100)

Тут і відомі величини, а і - невідомі, які потрібно знайти. Для того щоб функція мала найменше значення, необхідно

виконати умови:

або

Перегрупувавши члени, подамо цю систему у вигляді

або

(6.101)

Ця система рівнянь називається нормальною системою методу найменших квадратів. Розв’язавши її, знаходимо і і підставляємо в емпіричну формулу .

Нехай тепер експериментальні точки розміщені поблизу деякої параболи (див. рис. 6.14). Тоді

(6.102)

Для знаходження і використаємо метод найменших квадратів. Відхилення за ординатою експериментальних точок від відповідних точок параболи

, (6.103)

Доберемо параметри і так, щоб сума квадратів похибок (6.104)

була найменшою. Для цього необхідно виконання умов

Обчисливши частинні похідні, маємо систему рівнянь

Перегрупувавши доданки в кожному із рівнянь, одержимо нормальну систему рівнянь методу найменших квадратів для параболічної залежності:

(6.105)

Із цієї системи знаходимо і і підставляємо їх в емпіричну формулу .