Реферат: Зорі
Название: Зорі Раздел: Рефераты по астрономии Тип: реферат |
Реферат з астрономії на тему: «Зорі» Виконала: Кальна Роксана
Зорі у міфології
Наразі досить розвиненою та найбільш ймовірною є наступна теорія еволюції зір:
Наступний етап зорі — спалювання запасів водню (точніше — перетворення його на гелій). Залежно від маси зорі він буде тривати від кількох мільйонів років для зірок з масами в десятки разів більшими ніж маса Сонця до 10-15 мільярдів років для зірок з масою близькою до маси Сонця. Це повільний процес, на який припадає більшість часу існування зорі. У цей час зоря перебуває на т.зв. головній послідовності діаграми Герцшпрунга-Рассела. Після того як водень у ядрі здебільшого «вигорить», термоядерні реакції перестають виробляти достатню кількість енергії для того, щоб підтримувати сталий, потрібний для урівноваження сил гравітації, тиск. Внаслідок падіння тиску зоря знову починає стискатися, поки ядро знову не розігріється до температури, за якої починається вже інша термоядерна реакція — гелій перетворюється на вуглець. Ядерні реакції гелій-вуглецевого циклу характеризуються набагато більшою швидкістю та, відповідно, виділенням енергії. Світність зорі зростає у десятки раз, вона розширюється («розпухає»), пересуваючись на діаграмі Герцшпрунга-Рассела вправо, до області гігантів. Коли ж закінчиться і гелій, зорі просто «скидають» частину своєї маси(так формуються планетарні туманності) і тут все залежить від маси зорі. Від зорі, маса якої після скидання оболонки не перевищує 1.2 маси Сонця через кілька десятків тисяч років залишиться тільки дуже гаряча і густа зоря яку називають білим карликом. Поступово вона охолоджується і перетворюється на чорного карлика — мертву, холодну зірку. Зорі з масою від 1.2 до 1.6 мас Сонця після скидання оболонки стискаються до розмірів порядка 10 кілометрів і називаються нейтронними, бо при такій густині вільні електрони ніби «вдавлюються» в протони. У міру стискання такі зорі сильно розкручуються і починають випромінювати радіохвилі з певною досить стабільною частотою. Саме так і були виявлені реально існуючі нейтронні зорі у 1967 році. Зоря, маса якої після скидання оболонки більше ніж 1,6 маси Сонця, починає сильно стискатися, і тому що при даній масі внутрішній тиск «виродженого» газу, з котрого складається зірка, не може урівноважити гравітаційну силу зоря стискається до точкових розмірів. Така зоря називається чорною діркою. Її гравітація настільки велика, що навіть фотони не можуть її подолати, тому ніякими методами окрім гравітаційних зафіксувати таку зірку неможливо. Внаслідок річного руху Землі по орбіті близькі зорі дещо зміщуються відносно далеких, фактично «нерухомих» зір. За рік близька зоря описує на небесній сфері малий еліпс, розмір якого тим менший, що далі зоря. В кутовій мірі, велика піввісь цього еліпса приблизно дорівнює величині максимального кута, під яким із зорі видно піввісь земної орбіти, перпендикулярну до напрямку на зорю. Цей кут (π), називається річним або тригонометричним паралаксом зорі і використовується для вимірювання відстані до неї, на основі тригонометричних співвідношень між сторонами і кутами трикутника, в якому відомий кут π та базис — піввісь земної орбіти. Відстань до зір, визначена за величиною її тригонометричного паралаксу π, дорівнює: r = 206265/π (а.о.), де π — паралакс, виражений в кутових секундах. В астрономії використовують спеціальну одиницю виміру відстані до зір — парсек (пк). Зоря, яка перебуває на відстані 1 пк, має паралакс рівний 1". Згідно формули (1), 1 пк = 206265 а.о. = 3*1016м. Поряд з парсеком використовується ще одна спеціальна одиниця виміру відстані — світловий рік. Він дорівнює відстані, яку світло долає протягом року, і рівний 0,307 пк, або 9,46*1015м. Найближча до Сонячної Системи зоря — червоний карлик 12-ї зоряної величини — Проксима Центавра, має паралакс 0,762", тобто відстань до неї становить 1,3 пк (або 4,3 св.роки). Фотометричний метод визначення відстані Освітленість створювана однаковими за потужністю джерелами світла, обернено пропорційна квадратам відстані до них. Як результат, видимий блиск однакових світил (тобто освітленість, створювана на Землі в одиничній площадці, перпендикулярній променям світла) може слугувати мірою відстані до них. Вираз освітленості в зоряних величинах (m — видима, M — абсолютна зоряна величина) приводить до основної формули фотометричної відстані — rф (пк): lg(rф) = 0,2(m - M)+ 1 (2) Для світил, у яких відомі тригонометричні паралакси, можна визначити M, за цією ж формулою, зіставивши фізичні властивості із абсолютними зоряними величинами. Це зіставлення показало, що абсолютні зоряні величини багатьох класів світил (зір, галактик) можна оцінювати за низкою їх фізичних властивостей. Основним способом оцінки абсолютної величин зір є спектральний: в спектрах зір одного і того ж спектрального класу знайдені особливості, які вказують на їх абсолютні зоряні величини (найчастіше — підсилення ліній іонізованих атомів зі збільшенням світності зір). За такими ознаками зорі поділені на класи світності. За класами і більш дрібними підкласам світності, які оцінюються за їх спектрами, можна визначити абсолютну зоряну величину з похибкою до 0,5m. Ця похибка відповідає відносній похибці 30 % при визначенні rф за формулою (2). [ред.]Метод визначення фотометричної відстані, заснований на властивостях цефеїд Цефеїди — змінні зорі великої світності (гіганти та надгіганти). Вони належать до зоряного населення I типу (плоска складова Галактики). Для них встановлена важлива залежність період — світність (що довший період коливання блиску, то цефеїда яскравіша за абсолютною зоряною величиною), яка визначається формулою: MV = − 3.88 − 2.87(lgP − 1) [2] де: MV — абсолютна зоряна величина у жовтих (видимих) променях;
Маючи зі спостережень період, можна знайти абсолютну зоряну величину М; знаючи останню і маючи зі спостережень видиму зоряну величину m за допомогою фотометричного методу можна знайти відстань до цефеїди. Цей метод використовується не тільки для знаходження відстані до самих цефеїд, а й до зоряних скупчень, галактик, в складі яких вдалося знайти цефеїди. Метод запропоновано Ейнаром Герцшпрунгом на початку 20-го сторіччя, проте він і досі залишається одним з найважливіших засобів побудови шкали міжзоряних та міжгалактичних відстаней. |