Реферат: Расчет релаксационного генератора на ИОУ
Название: Расчет релаксационного генератора на ИОУ Раздел: Промышленность, производство Тип: реферат | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
СОДЕРЖАНИЕ 1. ОБОСНОВАНИЕ ВЫБОРА СХЕМЫ... 7 3. СПЕЦИФИКАЦИЯ ЭЛЕМЕНТОВ СХЕМЫ... 17 СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ... 19 ЗАДАНИЕРазработать и рассчитать релаксационный генератор на ИОУ (интегральной схеме операционного усилителя) в соответствии с данными, представленными: · вид генератора - мультивибратор · режим работы – автоколебательный · период следования импульсов Т, мс – 0.09 · длительность выходного импульса tu , мкс – 35 · длительность фронта выходного импульса , мкс - Проанализировать нестабильность длительности генерируемых импульсов разработанного релаксационного генератора в зависимости от разброса параметров навесных элементов. ВВЕДЕНИЕНеотъемлемой частью почти любого электронного устройства является генератор гармонических или каких-либо других колебаний. Кроме очевидных случаев автономных генераторов (а именно генераторы синусоидальных сигналов, генераторы каких-либо функций, импульсные генераторы) источник регулярных колебаний необходим в любом периодически действующем измерительном приборе, в устройствах инициирующих измерения или технологические процессы, и вообще в любом приборе, работа которого связана с периодическими колебаниями. Они присутствуют практически везде. Так, например, генераторы колебаний специальной формы используются в цифровых мультиметрах, осциллографах, радиоприемниках, ЭВМ, в любом периферийном устройстве ЭВМ (накопители на магнитной ленте или магнитных дисках, устройство печати, алфавитно-цифровой терминал), почти в любом цифровом приборе (счетчики, таймеры, калькуляторы и любые приборы с “многократным отображением”) и во множестве других устройств. Устройство без генератора либо, либо предназначено для подключения к другому (которое скорее всего содержит генератор). В зависимости от конкретного применения генератор может использоваться просто как источник регулярных импульсов («часы» в цифровой системе); от него может потребоваться стабильность и точность (например, опорный интервал времени в частотомере), регулируемость (гетеродин передатчика или приемника) или способность генерировать колебания в точности заданной формы (как например, генератор горизонтальной развертки осциллографа). Возможность построения мультивибратора на ИОУ (интегральный операционный усилитель) обусловлена тем, что при соединении выхода ИОУ с его неинвертирующим входом получаем замкнутую резисторную или резисторно-конденсаторную цепь положительной обратной связи, обеспечивающую возможность возникновения лавинообразных процессов. При этом напряжение на выходе ИОУ меняется скачкообразно от своего максимального до минимального значения и наоборот – при изменении знака напряжения входного дифференциального сигнала. В импульсных устройствах широкое применение находят генераторы, выходное напряжение которых имеет форму, резко отличающуюся от синусоидальных. Колебания такой формы носят название релаксационных и бывают прямоугольными, пилообразными, пилообразно-импульсными и т.д. Мультивибратор является релаксационным генератором. Он может работать в режиме автоколебаний, либо в ждущем режиме. В режиме автоколебаний он не имеет состояния устойчивого равновесия. При работе мультивибратора в этом режиме существуют два чередующихся состояния квазиравновесия. Состояние квазиравновесия характеризуется сравнительно медленным изменением токов и напряжений, приводящих к некоторому критическому состоянию, при котором создаются условия для скачкообразного перехода мультивибратора из одного состояния в другое. Период колебаний при этом зависит от параметров схемы. В ждущем режиме мультивибратор имеет состояние устойчивого равновесия и состояние квазиравновесия. Переход из первого во второе происходит в результате воздействия внешних запускающих импульсов, а возвращение в устойчивое состояние - самостоятельно по истечении некоторого времени, зависящего от параметров схемы. 1. ОБОСНОВАНИЕ ВЫБОРА СХЕМЫИтак, мультивибратор – это релаксационный генератор, вырабатывающий импульсы почти прямоугольной формы. При выборе схемы реализации данного устройства мы будем стараться найти оптимальный вариант между простотой, низкой стоимостью и исходными данными задания. Найдем скважность генерируемых импульсов:
где Т=0,09 мс – период следования импульсов tu =35 мкс – длительность выходного импульса В нашем случае требуется получить генерируемые импульсы большой скважности , следовательно, цепь заряда конденсатора должна отличаться от цепи разряда. Выберем схему мультивибратора на ОУ, приведенной на рисунке №1. В данном случае положительная обратная связь обеспечивается делителем напряжения на резисторах R1, R2. В момент t =0 (рис.2) включается источник питания ИОУ. При этом начинает возрастать , а следовательно, и напряжение, снимаемое с делителя R1, R2 и поданное на вход , что вызывает дальнейшее увеличение выходного напряжения , т.е. происходит лавинообразный процесс, в результате которого скачкообразно возрастает до значения (это первое состояние квазиравновесия), а - до значения , где
Напряжение при этом практически не изменяется и равно нулю. С увеличением t за счет заряда конденсатора через резистор увеличивается напряжение по экспоненциальному закону до значения Е. В момент времени . При этом уменьшается лавинообразно, меняя полярность на противоположную. В результате окончания этого лавинообразного процесса , а . Конденсатор начинает разряжаться через резистор и стремится перезарядиться до напряжения . В момент, когда при перезагрузке конденсатора напряжение достигает значения , вновь возникает регенеративный процесс, завершающийся переключением схемы во второе состояние квазиравновесия. Таким образом, периодически происходит переход из одного состояния квазиравновесия в другое. Первый импульс имеет меньшую длительность , т.к он формулируется при зарядке конденсатора от нуля до , и определяется по формуле: , где Последующие импульсы определяются по формуле:
Период следования импульсов в нашем случае равен:
где и - сопротивления зарядного и разрядного резисторов соответственно. Синфазный сигнал мал и , а максимальный дифференциальный сигнал . При выборе интегральной схемы операционного усилителя (ИОУ) необходимо обратить особое внимание на тот факт, что во избежании выхода из строя ИОУ требуется выполнение условия , следовательно, , где - допустимый дифференциальный сигнал. Выбор резисторов и с одной стороны должен обеспечивать выполнение вышеуказанного условия для , а с другой стороны – обеспечивать требуемую по заданию длительность генерируемого импульса по формуле (3). 2. РАСЧЕТНАЯ ЧАСТЬОпираясь на результаты теоретической части данной работы, выберем ИОУ, удовлетворяющий основным требованиям задания и выбранной схемы реализации мультивибратора, а также произведем расчет отдельных элементов схемы обеспечивающих выполнение требуемых параметров устройства. Выберем К574УД1 – быстродействующий операционный усилитель с полевыми транзисторами на входе. Обладает высоким входным сопротивлением, большой частотой единичного усиления и высокой скоростью нарастания выходного напряжения. Допустимые значения параметров: E=15, B Uвых мах =10, В Uсф м =10, В Кu =50000 Rвх =10000 МОм Rвых =1 кОм Vu вых =90 в/мкс 1) Согласно теоретической части работы:
, следовательно , также
2) Подберем параметры резисторов R 1 и R 2 . Реальные значения и оказывают влияние на длительность и форму генерируемых импульсов. Однако это влияние незначительно, если сопротивления резисторов R 1 и R 2 удовлетворяют неравенствам: Следовательно, R 1 и R 2 должны лежать в пределах от 1 кОм до 10000 МОМ, а также должно выполняться . Возьмем кОм и кОм условие выполнено. 3) Подберем параметры для времязадающей цепи: Чем меньше , тем быстрее происходит перезаряд конденсатора и тем выше частота выходного сигнала. Однако следует иметь в виду, что при малых значениях постоянной времени может наблюдаться явление возбуждения паразитных колебаний. Для обеспечения устойчивости генерации коротких импульсов целесообразно использовать наиболее рациональный путь – уменьшение коэффициента связи по неинвертирующему входу при значениях времязадающей цепи, превышающих критическую величину. При этом стабильная работа мультивибратора наблюдается при значениях . с Необходимо подобрать параметры , и таким образом, чтобы выполнить равенство. с. Выберем Ом ,Ом ,Ф учитывая, что на разряд конденсатора времени должно уйти больше чем на заряд. с. мс. 4) Длительность фронтов выходных импульсов в рассматриваемом мультивибраторе зависят от предельной скорости вых нарастания выходного напряжения используемой микросхемы операционного усилителя: , у нас по условию задания мкс. условие выполнено. Длительность фронта выходного импульса . Чем меньше отношение тем форма импульса ближе к прямоугольной. 3. СПЕЦИФИКАЦИЯ ЭЛЕМЕНТОВ СХЕМЫ
ЗАКЛЮЧЕНИЕВ курсовой работе был разработан релаксационный генератор на ИОУ с большой скважностью генерируемых импульсов в режиме автоколебания. В процессе ее выполнения получены навыки выбора схемы и ее элементов в зависимости от необходимого результата. Приобретены знания об основных свойствах интегральных операционных усилителей, используемых при построении импульсных генераторов различного назначения, в частности с использованием в данной курсовой работе ИОУ К574УД1. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ1. П. М. Грицевский, А. Е. Мамченко, Б. М. Степенский Основы автоматики, импульсной и вычислительной техники. - М.; «Радио и связь», 1987г. 2. П. Хоровиц, У. Хилл Искусство схемотехники-1 – М.; «Мир» 1993 г. 3. Справочник: Интегральные микросхемы. Операционные усилители Том I. – М.; ВО «Наука» 1993г. ПРИЛОЖЕНИЕ |