Статья: Единая геометрическая теория классических полей
Название: Единая геометрическая теория классических полей Раздел: Рефераты по физике Тип: статья | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
. . (dimstein@list.ru)
, . , 2007 .
. - ,
- . - ! !
! ! . " ! ! , # $$# !. % & , ! , ! & . 1. ! " # # . $ # - , – # . % , # # & & – ’ . ( ( # &# & & ) # . ) # , ’ # . & # # , ’ # &. * ’ ’ # # , - , . * & #&# # # & & – & & – # !" # " (# ) . +# # # & #, # ’ # # # . ( # (’ # - , # ). ( & # & # # & & – ’ . ,# , & , ’ # #. ) # , # ’ , # #. * # # ( ! ( ’ # ), # ’ . $ ’ # & # . 2.
# &# ( ! , & ’ . ) – - -% "& - [14]. * ’ &# # # & & & & , # &: # #, # # ( , #). , - -% , 24 .
# , - -% . ( #" , # ’ . * . # # , # . . 0 - , ’ , , & , # # # (Ωα⋅µν=Ωα⋅[µν]): (1) Ωα ⋅ µν=∆α µ ν−∆α ν µ# ∆α µ ν – . * ’ . . ∆α µ ν # : (2) # K – , # # (K α µν= K [ αµ] ν), Γµ α ν – % ( , . 1-3). $ # # " $. # & ( ) ’ ( ’ # ) #: (3) dds 2x 2µ µ dxds α dxds β= 0 +∆(αβ) d 2x µ (4) ds 2 +Γαµβ dxds α dxds β= 0 (3) #, (4) ’ . . $ (3) (4) # #, #, # : (5) ∆µ(αβ) =Γαµβ $ (2) ’ # !: (6) ∆µ [ αβ] = K µ ⋅ αβ , # # #. , # (K α µν= K [ αµν] ). . (1) (6) ’ ! (7)
* ’ .
3. !" " !"# !- " $ % ! && #
, & - - -% , #, ( ), ’ #, , # . 1) . ( # - # : (8) ds 2 = g µν dx µ dx ν g µ ν # ∇α g µ ν= 0, # ∇α – # # x α ( , . 4-5). 2) . . 0 , , ", # & . , A , # # (2) #: (9) ∆α µ ν=Γµ α ν + iA α ⋅ µν# A α µν=−A µ αν=−A α νµ=−A ν µα= A [ αµν] . . % # : (10) $ # A # #: (11) A αµν=−εαµνσA σ # A µ – # , εα βµν – 2 3 . A µ # # : (12) A µ=−εµαβγA αβγ ( # ’ , # # ’ a µ : (13) a µ = q ˆA µ # q ˆ – ’ #. . ! (13) ’ . % q ˆ # # ! # , , & ( A ~ A µ ~ 1/q ˆ ). 1 " (9) # : (14) Ωα ⋅ µν= 2∆α [ µν] = 2iA α ⋅ µν $ # " . * # , # ∆α µ ν # # , # Γµ α ν ( , . 6).
1 - &# " - R :
1 F µ ν , # F µν : (25) F µ ν= 1 εµ ναβF αβ 2 * (24) (11), & &#, # - (25) : (26) F µν =∂µ A ν −∂ν A µ, # " ’ . . (13) (26) " ’ f µ ν # # # - : (27) f µν =∂µ a ν −∂ν a µ = q ˆF µν. - (21) # : (28) R = g µνR (µν) = R ~ − 6 A αA α # R ~ = R ~ µ ⋅µ – . 1 , # ’ , # # & ’ . * ’ ’ ( ), " ’ – - . A µ # - F µ ν & ’ a µ " f µ ν, & & ’ .
4. ’ $ !"( %’ #$"# #
4 , # - , , : (29) δ LG − g в 4 x = 0 # LG – # . 2 , - , # , (29). 2 LG , ( ! , - . * & ’- ( , . 9-10) - : (30.1) Rc (30.2) Rc R µν R αβ (30.3) Rc (30.4) Rc (4) ≡δα⋅β⋅γ⋅λ⋅µνστR µνR αβR στR γλ * " & - # #, , " & # . & "& & - (30) # # . * Rc (1) (30.1) # R . (28) (13) : (31) Rc (1) = R = R ~ −6A αA α= R ~ − q ˆ62 a αa α $ Rc (2) (30.2) δα ⋅ β ⋅ µν & # - ,
(32) Rc (2) f αβ f α β q ˆ
# & # & & - Rc (1) Rc (2) , " ! # . 3 LG . (§ 2). . ’ # # L 2 (R ) , # : (33) L 2 = (R − R 0 )2 = R 2 − 2R 0 R + R 0 2 # R 0 – . 2 LG L 2 & - : (34) L G = L 2 (R n →Rc (n ) )=Rc (2) −2R 0Rc (1) + R 02 $ (34) # # & " # (33). * R 0 , &# LG , # , . . " (31) (32) # #: (35) L G =− R 0 1q ˆ2 f αβf αβ+ R ~ − q ˆ62 a αa α− R 20 . ’ , &#: (36) q ˆ = 8 π κR 0 (37) Λ= R 0 4 # Λ – (Λ ~ 10−56 −2 ), κ – ( ! . . " ! (36) # LG ! #: (38) LG =−(f αβ f αβ + 6R 0 a α a α )+ R ~ − 1 R 0 2
( # # (39) δ −(f αβf αβ + 6R 0 a αa α)+ R ~ − 1 R 0 − g в 4 x = 0 2 ~ = g # R (40) (41) # (42) (43) G µ ν – . ’ 1 ’ ’ # µν R ~ µν. $ g µν , Γµ α ν a α ( ) ( (10)): G µ∇~σf µσ+3R 0a µ= 0 # : ≡ R ~µ ν − 1 g µ νR ~ G µ ν 2 T ˆµν ≡ 41π f a µa a αa α ( ! , T ˆ µ ν – " ’ - ’ . (40) (41), & , # # ’ # . # ’ # (41) - ’ (43), (40) # ( ! , # . ’ (41) - , & .
(44) µ a µ
1 T ˆ µ ν # # ’ # &, ’ - : (45) ∇µ T ˆµν = ∇~ µ T ˆµν = 0 $ & (45) (40) # " # 5 , & . # R 0 . . (40) : (46) − R ~ + R 0 = − 3κ4πR 0 a αa α = −6A αA α , # " (28) &#, (47) R 0 = R ~ −6A α A α = R 1 , R 0 . * (40) ! (47) !. (40) (41) # , , & ( ), & #. 3 , , . $ : (48) G µ (49) ∇~ σ f µσ +3R 0 a µ =ξj µ # T µ ν = T ˆ µ ν +T ~ µν, T ~ µν – ’ - , T µ ν – ’ - , j µ – , ξ – (ξ= 4π/ ). & & # , & # : (50) ∇µ πµ = ∇~ µ πµ = 0 (51) ∇µ j µ = ∇~ µ j µ = 0 # πµ = µu µ ( ), j µ = ρu µ ( #), µ – , ρ – # , u µ – # (dx µ d τ ). $ µ ρ # , " . $ & µ, ρ u µ , # . - # . * # (49) # & # (51) 2 # ’ : (52) ∇µ a µ = ∇~ µ a µ = 0 ( . ( ’ (49), # a µ #. * # # (48) & # ’ - : (53) ∇µ T µν = ∇~ µ T µν = 0 . ’ ’ - : (54) ∇~µT ~µν = −∇~µT ˆµν . " (44) (49) (52) T ~ µν (54) ! #: (55) j µ (55) # & . 1 # , # # . 1 ’ - # ! #, ~ = µu µ u ν =πµ u ν , # & # & , T µ ν # µ – #, u µ – # # #. # (55) # ’ # " & (50) #: (56) j µ + # # # , # # # ’- . $ ’ πµ =µu µ = m δ(x − x 0 )u µ j µ =ρu µ = q δ(x − x 0 )u µ , # m q – # . $ (56) " , u β ∇~ β u ν = du ν d τ+ Γα ν β u α u β , : du ν (57) +Γα νβ u αu β= q f u β d τ mc
# # . (58) # !, & # & . $ # & # & ’ ! # #: (59) a µ = a 0 µ sin(kx −ωt ) # x – # # # & . * ’ ω k !: (60) ω2 = 2 (k 2 +3R 0 ) # c – # # & #. . ! (60) ’ & ! # #, , # ’ ’ , # # : (61) v =ω k = c 1+ 3 k R 2 0 > c (62) v = d dk ω = c 1− 3R 0 ωc 2 2 < c 1 , ’ # , & (58), ’ # # ! # c (62). % # (61) (62) ( # ). & # c . , c # & , ’ ! # . $ - ! (58) #. . (58) ’ ’ & # & # : (64) ϕ = q e −αr r # ϕ= a 0 (’ ), q – ’ #, α= 3R 0 = m γ c / , r – # # #. - α (64) « » ’ . . , & ’ (58) , , ! ’ & , m γ : 3R 0 (63) m γ = c * ’ # # (62). . (63) . (63) ’ . * ! (37) , & ’ : (64) 3R 0 ~10−55 −2 (65) m γ ~ 10−65 * # # # ’ . . ’ # # # # : (66) m γ < 3⋅10−60 1 (65) # ’ . ( , # ’ , # " # # ’ , # ’ .
7. ,#%-(
. & ’ , ’ ’ & # . * #&#, # ’ . $ - -% ( ). * ’ - . . # # , ’ – ( ), # & - . / # ’ # & & ’ . ( # , " ’ – # - . * ’ # # & ’ . $ & & & ( ) # & & # # & # #, # #. , # ’ , #" . 3 ’ & # , ( ’ - ). ) & ’ # , " ’ # ’ - ’ . $ & & . * , # " & & ’ , # ! 2 . $ &, # , , ( ! ( ). . ’ , " ’ , . * ’ , . * # &# ’ . $ , # , # & & & ! . _____________________
"
1. 0 - -% : ∆αµν = Γµαν + K α⋅µν
K αµν = −K µαν 2. ." % : σ =∂µ g , # g = det g µ ν Γµσ2g 3. $ # : Ωαµν = ∆αµν − ∆ανµ = K αµν − K ανµ K αµν = 1 (Ωαµν − Ωµαν − Ωναµ) 2 4. : δu µ = −∆µαβu αdx β, δu µ = ∆αµβu αdx β 5. % # : ∇µu ν = ∂µu ν + ∆νσµu σ, ∇~µu ν = ∂µu ν + Γσνµu σ ∇µu ν = ∂µu ν − ∆σνµu σ, ∇~µu ν = ∂µu ν − Γνσµu σ 6. % # # ∆α µ ν = Γµ α ν + iA α ⋅ µν: A α⋅µα = A α⋅(µν) = 0, ∆αµα = Γµαα , ∆α(µν) = Γµαν ∇µu µ = ∂µu µ+ ∆µσµu σ = ∂µu µ+ Γσµµu σ ∇µ T (µν) = ∂µ T (µν) +∆µσµ T (σν) + ∆ν( σµ ) T (µσ) = ∂µ T µν + Γσ µµ T (σν) + Γσ νµ T (µσ) 7. 1 - : (∇µ∇ν −∇ν∇µ)u λ = R λ⋅σµνu σ + Ωσ⋅µν∇σu λ R α⋅βµν = ∂µ∆αβν − ∂ν∆αβµ+ ∆ατµ∆τβν − ∆ατν∆τβµ Ωα ⋅ µν = ∆α µ ν − ∆α ν µ8. - - : R +∇~ α −∇~νK α⋅βµ+ K α⋅τµK τ⋅βν− K α⋅τνK τ⋅βµ µK ⋅βν 9. 1 2 3 : εαβγλ = g [αβγλ], εαβγλ =− 1 [αβγλ] +1, αβγλ - " 0123 [αβγλ ]= −1, αβγλ - " 0123 0, αβγλ # 10. * ’- : δα⋅β⋅γ⋅ λ⋅µνστ ≡ −εαβγλεµνστ δα⋅β⋅γ⋅µνσ ≡ −εαβγτεµνστ
!"#!&"#
1. Einstein A., The Meaning of Relativity, Princeton Univ. Press, Princeton, N.Y, 1950 (* #: (!& ! )., . , 2, ., 1955). 2. ). (!& ! , . & #, 1. 1-2, #- «) », ., 1966. 3. E. Schrodinger, Space-Time Structure, Cambridge University Press, 1960 (* #: (. 6#, * - , , )7 , 2000). 4. * *. "., * & +. ,., 1 , #- «) », ., 1973. 5. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco, 1973 (* #: -. , , . . , " . / , / , #- « », ., 1977). 6. 0. ). " $ , . 1. % , ). .. 2 , . : # , #- «) », ., 1986. 7. E. Cartan, Lecons sur la Geometrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928 and 1946 (* #: % (., - , #- /, ., 1960). 8. +. Cartan, On Manifolds with an Affine Connection and the Theory of General Relativity, translated by A. Magnon and A. Ashtekar (Bibliopolis, Naples, 1986). 9. %. %. 1 , ) # - , #- «+# -..», 2002 . 10. 3. . - $ , 0 & # , 7), 1 119. . 3, 1976. 11. Alberto Saa, Einstein-Cartan theory of gravity revisited, gr-qc/9309027 (1993). 12. Hong-jun Xie and Takeshi Shirafuji, Dynamical torsion and torsion potential, gr-qc/9603006 (1996). 13. V.C. de Andrade and J.G. Pereira, Torsion and the Electromagnetic Field, gr-qc/9708051 (1999). 14. Yuyiu Lam , Totally Asymmetric Torsion on Riemann-Cartan Manifold, gr-qc/0211009 (2002). |