Учебное пособие: Методические указания по выполнению курсовой работы
Название: Методические указания по выполнению курсовой работы Раздел: Остальные рефераты Тип: учебное пособие | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ПРОЕКТИРОВАНИЕ СИСТЕМ КОНТРОЛЯ И УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ Методические указания по выполнению курсовой работы Подготовил Сергей Чекрыжов Кохтла-Ярве 2009 ЦЕЛЬ КУРСОВОЙ РАБОТЫ Выполнение курсовой работы «автоматизация производства» создаёт навыки проектирования систем автоматизации. Основной задачей курсовой работы является развитие у студентов самостоятельности в работе с технической литературой и данными Интернета: стандартами, каталогами заводов-изготовителей, справочной литературой, базами данных сайтов заводов-изготовителей и фирм поставщиков . СТАДИИ РАЗРАБОТКИ КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ. Проектирование систем автоматизации технологических процессов выполняется специализированными проектными организациями . Предусматривается пять стадий разработки конструкторской документации на изделия (предмет или набор предметов производства) всех отраслей промышленности: · техническое задание (ТЗ); · техническое предложение (ТП) · эскизный проект (ЭП) · техничеcкий проект · рабочая документация Организационные основы выполнения курсовой работы Темой курсовой работы определяется в результате технологической практики на производстве. Тема согласовывается с руководителем. Для студентов, не определившихся с темой курсового проекта, руководитель предлагает варианты задания на основе материалов учебной и методической литературы. Возможные варианты названия курсовой работы: "Разработка систем контроля и управления процессами производства продукции" , "Проектирование системы контроля и управления процессом производства, "Проект автоматизации процесса " «Создание системы мониторинга технологических параметров процесса производства». При выполнении курсовой работы необходимо. 1. Изучить технологический процесс и конструкцию аппаратов и оборудования, используя имеющуюся по данной теме техническую литературу. 2. Сделать SWOT анализ существующей системы контроля и управления и обосновать необходимость совершенствования системы 3. Сделать постановку задачи автоматизации и обосновать выбор параметров контроля и регулирования. 4. Предложить самостоятельное решение по модернизации или изменению системы контроля и управления на основе применения современных приборов и средств автоматизации. Разработать или модернизировать схему автоматизации. 5. Выбрать и обосновать SCADA систему. 6. Заполнить заказную спецификацию на приборы и средства автоматизации, используя современные данные о средствах контроля и управления. Состав и оформление курсовой работы ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Пояснительная записка состоит из следующих частей: - Титульный лист , на которой указывается название и код предмета , тема, имя и фамилия студента,код группа, год выполнения работы; - бланк задания; - содержание ; - основная часть; - список использованных источников, который содержит библиографические данные по всем использованным справочникам и оформляется в порядке ссылки на литературные источники по тексту пояснительной записки; - приложение, где содержится заказная спецификация на приборы и средства автоматизации, относящаяся к функциональной схеме автоматизации. В пояснительную записку курсового проекта включают следующие разделы. Во введении обосновывается актуальность и целесообразность совершенствования существующих и введения новых систем автоматизации, создания автоматизированных систем управления технологическими процессами, применение микропроцессорной техники . Приводится краткое описание содержания работы и её практическая значимость. В первом разделе приводится описание технологического процесса , подробное изложение последовательности отдельных стадий технологического процесса в объеме, необходимом для постановки задачи автоматизации. Проводится SWOT анализ существующей системы контроля и управления Во втором разделе дается обоснованный выбор технологических параметров, подвергающихся измерению, регулированию и сигнализации. Обосновывается режим контроля , целесообразность применения SCADA системы, законы регулирования , режим сигнализации и срабатывания блокировок. Исходя из особенностей данного технологического процесса, выбираются приборы и средства автоматизации (СА) для реализации перечисленных функций. В разработке систем автоматизации важным этапом является анализ основных стадий ТП как объектов управления, т.е. выявление всех существующих входных и выходных переменных и анализ статических и динамических характеристик каналов возмущения и регулирования. Исходными данными при этом служат математическая модель технологического процесса (ТП) в виде уравнений материального и энергетического балансов. На основе этих уравнений все факторы разбиваются на группы. Возмущения, допускающие стабилизацию. К таким параметрам относятся показатели входных потоков. Так, расход жидкости можно стабилизировать, если перед аппаратом имеется буферная емкость, сглаживающая колебания расхода на выходе из предыдущего аппарата; стабилизация температуры входного потока возможна, если перед аппаратом установлен теплообменник и т.п. Очевидно, при проектировании систем управления целесообразно предусмотреть стабилизацию таких возмущений. Контролируемые возмущения. К ним условно относятся те возмущения, которые можно измерить, но невозможно или недопустимо стабилизировать (расход жидкости, подаваемой непосредственно из предыдущего аппарата, температура окружающей среды и т.п.). Наличие существенных возмущений требует применение либо замкнутых по основному параметру ТП систем регулирования, либо комбинированных АСР. Неконтролируемые возмущения. К ним относятся те возмущения, которые невозможно или нецелесообразно измерять непосредственно. Первые - это, например, падение активности катализатора, изменение коэффициентов тепло- и массопередачи и т.п. Примером вторых может служить давление греющего пара в заводской сети, которое изменяется случайным образом. Наличие таких возмущений требует обязательного применения замкнутых по основному параметру ТП систем автоматизации. Регулирующие воздействия. Это материальные и тепловые потоки, которые можно автоматически изменять для поддержания регулируемых (выходных) переменных ТП. Выходные переменные. При построении замкнутых АСР, в качестве регулируемых координат, выбирают технологические параметры, изменение которых свидетельствует о нарушении материального или теплового баланса в аппарате, что в конечном итоге влияет на качество готового продукта. К ним, например, относятся: уровень жидкости - показатель баланса по жидкой фазе; давление - показатель баланса по газовой фазе; температура - показатель энергетического баланса в аппарате; концентрация -показатель материального баланса по компоненту. Анализ возможных регулирующих воздействий и выходных координат объекта управления позволяет предварительно выбрать каналы регулирования. Окончательный выбор каналов регулирования проводят на основе сравнительного анализа статических и динамических характеристик различных каналов. При этом учитываются такие показатели, как коэффициент усиления, время чистого запаздывания, его отношение к наибольшей постоянной времени канала т/Г Выбор структуры автоматической системы регулирования. На основе анализа ТП как объекта управления производится выбор структуры АСР, обеспечивающей решение поставленной задачи автоматизации. Структура АСР выбирается в зависимости от требований к качеству переходных процессов. Постановка задач автоматизации (формулировка задач стабилизации и/ или программного, оптимального управления, контроля, сигнализации и блокировки и др.). В заключении содержатся основные выводы по проделанной работе, определяется значение разработанной системы автоматизации для повышения эффективности управления технологическим процессом, и что может реально воздействовать на качество продукции и технологический процесс. 2 ГРАФИЧЕСКАЯ ЧАСТЬ РАБОТЫ 2.1 Функциональная схема автоматизации (ФСА) Функциональная схема автоматизации является основным техническим документом, определяющим структуру и функциональные связи между технологическим процессом и средствами контроля и управления. На схеме показывают с помощью условных обозначений: - основное технологическое оборудование; - коммуникации потоков жидкостей, газов и пара - приборы и средства автоматизации Изображение технологического оборудования на ФСА должно соответствовать его действительной конфигурации, оно изображается упрощенно, без масштаба и второстепенных конструкций. На стадии «рабочие чертежи» разрабатывается следующая техническая документация: - структурные и функциональные схемы автоматических систем; -принципиальные электрические, гидравлические, пневматические схемы управления, регулирования, блокировки, сигнализации, а также электрические схемы питания; -общие виды и монтажные схемы щитов и пунктов; -схемы внешних электрическихи трубных проводок, а также их монтажные чертежи; -чертежи установки аппаратуры, щитов и пультов; В функциональных схемах автоматизации, последовательности буквенных обозначений должно быть следующей: 1. обозначение основной измеряемой величины; 2. обозначение, дополнительное (уточняющее основную) измеряемую величину; 3. обозначение функционального признака прибора. Схема построения кода условного обозначения прибора систем автоматизации. Функциональные признаки, если несколько в одном приборе, то порядок расположения следующий : I, R, C, S, A. В нижней части окружности, наносится обозначение позиций (цифровые или буквенно-цифровые). Функциональная схема автоматического контроля и управления предназначена для отображения основных технических решений, принимаемых при проектировании систем автоматизации технологических процессов. При создании функциональной схемы определяют: 1) целесообразный уровень автоматизации технологического процесса; 2) принципы организации контроля и управления технологическим процессом; 3) технологическое оборудование, управляемое автоматически, дистанционно или в обоих режимах по заданию оператора; 4) перечень и значения контролируемых и регулируемых параметров; 5) методы контроля, законы регулирования и управления; 6) объем автоматических защит и блокировок автономных схем управления технологическими агрегатами; 7) комплект технических средств автоматизации, вид энергии для передачи информации; 8) места размещения аппаратуры на технологическом оборудовании, на щитах и пультах управления. На функциональной схеме изображаются системы автоматического контроля, регулирования, дистанционного управления, сигнализации, защиты и блокировок. Все элементы систем управления показываются в виде условных изображений и объединяются в единую систему линиями функциональной связи. Элементы пульта управления изображаются на функциональной схеме автоматизаций. Вверхняя часть в функциональной схемы приводится схема процесса или объекта управления и условного обозначения датчиков прибора измерения предназначенных для измерения технологического параметра , т.е. первичные преобразователь. Вторичные приборы контроля и управления, т.е. элементы щита и пульта управления изображается в нижнем части схемы в виде прямоугольники произвольных размеров. Внутри контура прямоугольника располагается условные обозначения приборов, средств автоматизации аппараты управления и сигнализации. Связь между первичным преобразователем и вторичными приборами показывается сплошной линией или обрыв линии с нумерацией . Существует два способа выполнения функциональных схем автоматизации: развернутый и упрощенный. При выполнении упрощенным способом на схемах показывают отборные устройства, первичные приборы, регулирующие устройства, исполнительные механизмы и одно условное изображение устройства контроля и управления независимо от того, сколько блоков и устройств в него входят. На этих схемах обычно не показывают щиты контроля, операторские пункты . Такие схемы создаются на начальных стадиях проектирования. При выполнении ФСА развернутым способом условное обозначение приборов и СА показывается для каждого отдельно существующего функционального блока. Щиты контроля и управления показывают в нижней части чертежа при помощи условных прямоугольников. Преимуществом развернутого способа является большая наглядность и возможность легкой и быстрой ориентации в распределении аппаратуры по пунктам управления. Достоинством упрощенного способа является меньшая трудоемкость составления схем автоматизации и непосредственное ее совмещение со схемой технологического процесса. На основании схемы автоматизации разрабатывается заказная спецификация на приборы и СА. В системах автоматического контроля и управления различными технологическими процессами значительное место занимают электрические приборы, аппараты, устройства, которые служат для обеспечения управления, блокировки, сигнализации и защиты. Для изображения взаимной электрической связи приборов и устройств служат электрическая схема. По своему назначению электрические схемы подразделяются на принципиальные, полные и монтажные . Принципиальные схемы служат для того, чтобы наиболее просто и наглядно условно изобразить устройства, входящие в схему, показать взаимную электрическую связь между ее отдельными элементами с учетом последовательности работы, т.е. дать представление о принципе действия Полные схемы . На основании принципиальных схем в некоторых случаях составляют полные электрические схемы, охватывающие весь комплекс агрегатов. Монтажные схемы . По монтажным схемам производится монтаж соответствующей аппаратуры и устройств. Эти схемы выполняются по принципиальным схемам с учетом территориального расположения всей аппаратуры, вида зажимов, способов и направлений прокладки соединительных проводов и кабелей и т.п. Форма исполнения принципиальных электрических схем должна облегчать их чтение, усвоение и анализ. Мнемоническая схема (мнемосхема) – условное графическое отображение технологических процессов, поточно-транспортных линий, энергетических и других систем. Она выполняется на экране монитора как комплекс символов, изображающих технологических агрегатов с их взаимными связями. Наглядно отображая структуру управляемого процесса, мнемосхема облегчает оператору запоминание схем объектов, взаимозависимость между ними. Мнемоническая схема, органами управления, малогабаритными измерительными приборами, образует информационную модель конкретной системы управления. Мнемосхемы целесообразно использовать в тех случаях, когда управляемые объекты имеют сложные схемы с большим числом контролируемых параметров. Пример задания на проектирование систем автоматизации. Объект автоматизации:
товарно-сырьевая база темных нефтепродуктов, в том числе: СПИСОК ЛИТЕРАТУРЫ 1 Проектирование систем автоматизации технологических процессов: Справ. пособие / Под ред. А.С. Клюева. М.: 2 http://www.kinef.ru/info_main.php 3 http://novszma.ru/index.php?mmm=projects Приложение 1 Функциональные схемы автоматизации 1 Условные обозначения Функциональная схема автоматического контроля и управления содержит упрощенное изображения технологической схемы автоматизируемого процесса. Оборудование на схеме показывается в виде условных изображений. На функциональной схеме изображаются системы автоматического контроля, регулирования, дистанционного управления, сигнализации, защиты и блокировок. В схемах автоматизации технологических процессов используют обозначения измеряемых величин, функциональные признаки приборов, линии связи, а также способы построения условных графических обозначений приборов и средств автоматизации. Все местные измерительные и преобразовательные приборы, установленные на технологическом объекте, изображаются на функциональных схемах автоматизации (ФСА) в виде окружностей (см. рисунок 1, а, б). Если приборы размещаются на щитах и пультах в центральных или местных операторных помещениях, то внутри окружности проводится горизонтальная разделительная линия (см. рисунок 1, в, г). Если функция, которой соответствует окружность, реализована в системе распределенного управления (например, в компьютеризированной системе), то окружность вписывается в квадрат (см. рисунок 1, д). Внутрь окружности вписываются: - в верхнюю часть - функциональное обозначение (обозначения контролируемых, сигнализируемых или регулируемых параметров, обозначение функций и функциональных признаков приборов и устройств); - в нижнюю - позиционные обозначения приборов и устройств. Места расположения отборных устройств и точек измерения указываются с помощью тонких сплошных линий. . Таблица 1 Графические обозначение элементов автоматизации
Буквенные обозначения средств автоматизации строятся на основе латинского алфавита и состоят из трех групп букв: 1 буква - Контролируемый, сигнализируемый или регулируемый параметр: D - плотность, Е - любая электрическая величина, F - расход, G - положение, перемещение, Н - ручное воздействие, К - временная программа, L - уровень, М - влажность, Р - давление, Q - состав смеси, концентрация, R - радиоактивность, S - скорость (линейная или угловая), Т - температура, U - разнородные величины, V - вязкость, W – масса. 2 буква (необязательная) - уточнение характера измеряемой величины: D - разность, перепад, F - соотношение, J - автоматическое переключение, Q - суммирование, интегрирование. 3 группа символов (несколько букв) - функции и функциональные признаки прибора: I - показания, R - регистрация, С - регулирование, S - переключение, Y - преобразование сигналов, переключение, А - сигнализация, Е - первичное преобразование параметра, Т - промежуточное преобразование параметра, передача сигналов на расстояние, К - переключение управления с ручного на автоматическое и обратно, управление по программе, коррекция. Дополнительные условные обозначения преобразователей сигналов и вычислительных устройств приведены в таблице 1. Букву S не следует применять для обозначения функции регулирования (в том числе позиционного). Буква Е применяется для обозначения чувствительных элементов, т. е. устройств, выполняющих первичное преобразование, например, термометров термоэлектрических (термопар), термометров сопротивления, сужающих устройств расходомеров. Буква Т обозначает промежуточное преобразование — дистанционную передачу сигнала. Ее рекомендуется применять для обозначения приборов с дистанционной передачей показаний, например, бесшкальных манометров (дифманометров), манометрических термометров с дистанционной передачей и других подобных приборов. Буква K применяется для обозначения приборов, имеющих станцию управления, т. е. переключатель для выбора вида управления (автоматическое, ручное) и устройство для дистанционного управления. Буква Y рекомендуется для построения обозначений преобразователей сигналов и вычислительных устройств. Порядок построения условных обозначений с применением дополнительных букв следующий: на первом месте ставится буква, обозначающая измеряемую величину; на втором—одна. Буква U может быть использована для обозначения прибора, измеряющего несколько разнородных величин. Расшифровка этих величин приводится около прибора или на поле чертежа. Для конкретизации измеряемой величины около изображения прибора (справа от него) необходимо указывать наименование или символ измеряемой величины, например, «Напряжение», «Ток», рН, О2 и т. д. Для обозначения величии, не предусмотренных данным стандартом, могут быть использованы резервные буквы В, N, О; при этом многократно применяемые величины следует обозначать одной и той же резервной буквой. Резервные буквенные обозначения должны быть расшифрованы на схеме. Вводной и той же документации не допускается применение одной резервной буквы для обозначения разных величии. Таблица 2 Дополнительные условные обозначения преобразователей сигналов и вычислительных устройств
Условные обозначения других приборов , используемых на схемах, показаны на рисунке 2.: - исполнительный механизм (общее обозначение). Положение регулирующего органа при прекращении подачи энергии или управляющего сигнала не регламентируется, – рисунок 2., а; - исполнительный механизм, открывающий регулирующий орган при прекращении подачи энергии или управляющего сигнала, – рисунок 2., б; - исполнительный механизм, закрывающий регулирующий орган при прекращении подачи энергии или управляющего сигнала, – рисунок 2., в; - исполнительный механизм, оставляющий регулирующий орган в неизменном положении при прекращении подачи энергии или управляющего сигнала, - рисунок 2., г; - исполнительный механизм с дополнительным ручным приводом (обозначение может применяться в сочетании с любым из дополнительных знаков, характеризующих положение регулирующего органа при прекращении подачи энергии или управляющего сигнала), – рисунок 2., д; - автоматическая защита из системы противоаварийной защиты (ПАЗ, см. рисунок 2.,е); - технологическое отключение (включение) из системы управления (см. рисунок 2, ж); - регулирующий орган (задвижка, клапан и т.д.), – рисунок 2., и; - регулирующий клапан, открывающийся при прекращении подачи воздуха (нормально открытый), – рисунок 2., к; - регулирующий клапан, закрывающийся при прекращении подачи воздуха (нормально закрытый), – рисунок 2., л; - управляющий электропневматический клапан, – рисунок 2., м; - отсекатель с приводом (запорный клапан), – рисунок 2., н; - электрозадвижка, – рисунок 2., п; - пневмоотсекатель, – рисунок 2., р; - отборное устройство без постоянно подключенного прибора (служит для эпизодического подключения приборов во время наладки, снятия характеристик и т. п.), – рисунок 2., с.
Рисунок 2.
2 Примеры построения условных обозначений приборов и средств автоматизации (В скобках указаны примеры типов приборов)
3 Основные принципы построения функциональных схем автоматизации ФСА представляют собой технологическую схему с нанесенными на нее обозначениями контрольно-измерительных приборов. Технологическое оборудование чертится обычными линиями, контрольно-измерительное – тонкими. При этом первичные преобразователи (датчики) ХЕ (для упрощения буквой Х обозначен произвольный технологический параметр; вместо него может быть любое обозначение из принятых: температура Т, расход F и т.д.), показывающие приборы, установленные по месту XI (TI, LI, FQI, PI и т.д.) и исполнительные устройства (клапаны, задвижки и др.) показываются непосредственно на схеме. Прочие приборы сносятся в таблицу, которая расположена ниже схемы и имеет как минимум две строки, обозначенных «По месту» и «На щите». Существует несколько наиболее распространенных вариантов ФСА.
а) б) в) г) д) е) Рисунок 3 Вариант 1. Измерение и индикация технологического параметра по месту (XI). Обычно эта функция возлагается на один прибор, в конструкцию которого входят датчик, преобразователь и шкала (индикатор). Прибор отображает значение измеренного параметра непосредственно в месте измерения и часто не имеет возможности вывода сигнала на щит. К таким приборам относятся градусники, стеклянные уровнемеры, расходомеры-счетчики и т.д. Прибор обозначается одной окружностью (см. рисунок 3, а). Вариант 2. Измерение с индикацией на щите оператора (XI, рисунок 3,б). Поскольку щит оператора, как правило, располагается на расстоянии от нескольких метров до нескольких десятков километров от места измерения технологического параметра, а сам технологический параметр не представляется возможным вывести на щит (например, температуру невозможно передавать на расстояние), то используется система из трех приборов: первичного преобразователя (датчика ХЕ), вторичного преобразователя (ХТ) и индикатора (XI). Цепочка передачи сигнала: XE ® [XT] ® XI (квадратные скобки показывают, что вторичный преобразователь может отсутствовать). Датчик измеряет технологический параметр, преобразует его в какой-либо сигнал, удобный для дальнейшей передачи (напряжение, ток, давление и т.д.) и передает его вторичному преобразователю. Вторичный преобразователь усиливает этот сигнал, преобразует его в один из унифицированных сигналов и передает далее. Вторичный преобразователь может отсутствовать, если, например, с выхода датчика уже поступает унифицированный сигнал. Показывающий прибор (XI) на щите у оператора, получив сигнал, отображает его на шкале (индикаторе). Если унифицированный сигнал токовый, то показывающий прибор – амперметр, если напряжение – вольтметр или потенциометр, если пневматический – манометр. Вариант 3. Измерение с индикацией и регистрацией (XIR или XR, рисунок 3, в). Принцип действия схемы аналогичен предыдущему варианту, но вместо показывающего прибора на щите устанавливается регистрирующий. Как правило, регистрирующие приборы одновременно показывают на шкале или индикаторе текущий регистрируемый параметр, т.е. выполняют одновременно функцию индикации. Цепочка передачи сигнала: XE ® [XT] ® XIR. Вариант 4. Сигнализация технологического параметра (XIA, рисунок 3,г). Существуют показывающие приборы, которые позволяют сигнализировать звуковым или световым сигналом факт выхода контролируемого параметра за допустимые пределы. Схема в этом случае будет аналогична варианту 2, но с выводом сигнала на лампочку или звуковой сигнал. Цепочка передачи сигнала: XE ® [XT] ® XIА ® лампочка. Вариант 5. Измерение с индикацией, регистрацией и сигнализацией на щите (XIRA, рисунки 3,д и 3,е). Для реализации перечисленных функций либо на щит устанавливается прибор, одновременно выполняющий их, либо используется комбинация схем из вариантов 3 и 4. В первом случае цепочка передачи воздействий: XE ® [XT] ® XIRА ® лампочка. Во втором производится ветвление сигнала с первичного или вторичного преобразователя на два прибора: на регистратор (XIR) и на прибор с сигнализацией (XIA): XE ® [XT] ® XIR ® XIА ® лампочка. а) б) Рисунок 4 Вариант 6. Регулирование (XIC, рисунок 4,а). Регулирование подразумевает наличие регулятора и управляющего воздействия на объект. На предприятиях нефтеперерабатывающей, газовой и химической промышленности для реализации управляющих воздействий на объект управления в основном используются задвижки, клапаны и другие устройства дроссельного типа. Принципы построения современных систем управления требуют при регулировании отображения регулируемого параметра для контроля за процессом регулирования, поэтому дополнительно реализуется функция индикации: XE ® [XT] ® XIС ® задвижка. Вариант 7. Регулирование, регистрация, индикация и сигнализация технологического параметра (XIRCA, рисунок 4,б). Функции также реализуются с помощью единого устройства, которое позволяет это сделать (например, с помощью пишущего потенциометра КСП-4 со строенными блоками регулирования и сигнализации), либо с помощью нескольких устройств, установленных на щите и реализующих каждое свою функцию. Ветвление сигнала также идет после первичного или вторичного преобразователя. Далее несколько схем рассматривается более подробно.
4 Примеры схем контроля температуры 1 Индикация и регистрация температуры ( TIR , рисунок 5) 101-1 Термоэлектрический термометр тип ТХА, гр. ХА, пределы измерения от –50 °С до 900 °С, материал корпуса Ст0Х20Н14С2, марка ТХА-0515 101-2 Преобразователь термоЭДС в стандартный токовый сигнал 0…5 мА, гр. ХА, марка Ш-72
Примечание - Другие виды амперметров А-502, А-503 – показывающие, А-542, А-543 – регистрирующие (последняя цифра – число параметров); А-100 – показывающий на 1 параметр. 2 Индикация, регистрация и регулирование температуры с помощью пневматического регулятора ( TIR С, пневматика, рисунок 6) 102-1 то же, что 101-1 102-2 то же, что 101-2 102-3 электропневмопреобразователь, входной сигнал 0…5 мА, выходной – стандартный пневматический 0,02…0,1 МПа, марка ЭПП-63 (или ЭПП-180) 102-4 пневматический вторичный прибор на 3 параметра со станцией управления, марка ПВ 10.1Э (с электроприводом диаграммной ленты)
. 3 Индикация и регулирование температуры с помощью микропроцессорного регулятора ( TI С, электрическая ветвь, рисунок 7) 103-1 то же, что 101-1 103-2 Трехканальный микропроцессорный регулятор типа «Протерм-100» 103-3 Регулирующий клапан для неагрессивных сред, корпус из чугуна, предельная температура Т = 300 °С, давление Ру = 1,6 МПа, условный диаметр Dу = 100 мм, тип 25нч32нж.
4 Индикация, регистрация, сигнализация и регулирование температуры с помощью потенциометра (моста) ( TIR С, электрическая ветвь, рисунок 8) 104-1 то же, что 101-1 104-2 Автоматический электронный потенциометр на 1 точку со встроенными устройствами регулирования и сигнализации, тип КСП-4 (или автоматический электронный мост типа КСМ-4 и т.д.) 104-3 Лампа сигнальная Л-1 104-4 то же, что 103-3
5 Измерение температуры многоточечным прибором ( TJIR , рисунок 9) 105-1 – 105-3 Термопреобразователи сопротивления (ТСП-6097), 105-4 - электронный мост (КСП-4) 5 Примеры схем контроля давления
1 Индикация давления ( PI ) 210-1 Манометр пружинный ОБМ1-160 2 Сигнализация давления ( PA , рисунок 11) 202-1 Пневматический первичный преобразователь давления, предел измерения 0… 1,6 МПа, выходной сигнал 0,02…0,1 МПа, марка МС-П-2 (манометр сильфонный с пневмовыходом) 202-2 Электроконтактный манометр с сигнальной лампой ЭКМ-1 202-3 то же, что 104-3.
3 Индикация, регистрация и регулирование давления ( PIRC , пневматика, рисунок 12) 203-1 то же, что 202-1 203-2 то же, что 102-4 203-3 то же, что 102-5 203-4 то же, что 103-3
4 Индикация и регистрация давления ( PIR , электрическая ветвь, рисунок 13) 204-1 Первичный преобразователь давления со стандартным токовым выходом 0…5 мА, марка МС-Э (или Сапфир-22ДИ и т.д.) 204-2 то же, что 101-3 5 Индикация, регистрация, регулирование и сигнализация давления ( PIRCA , пневматика, рисунок 14) 205-1 то же, что 202-1; 205-2 то же, что 102-4; 205-3 то же, что 102-5; 205-4 то же, что 103-3; 205-5 то же, что 202-2; 205-6 то же, что 202-3. 6 Схемы контроля расхода Схемы контроля уровня аналогичны схемам контроля давления, поскольку его значение при измерении либо преобразуется в давление (см. рисунок 15,а), либо датчики уровня, как и датчики давления, имеют на выходе стандартный пневматический или электрический сигнал (см. рисунок 15,б). Для измерения расхода жидкости первичные преобразователи устанавливаются в сечении трубопровода, поэтому на схеме их обозначения также, как правило, изображаются встроенным в трубопровод. При использовании сужающих устройств, например, диафрагм, перепад давлений на них замеряется дифманометрами, поэтому схемы автоматизации аналогичны схемам контроля давления. Прочие расходомеры, как правило, уже имеют на выходе стандартный сигнал. Примеры схем: 301-1 Диафрагма марки ДК6-50-II-а/г-2 (диафрагма камерная, давление Ру = 6 атм, диаметр Dу = 50 мм) 301-2 Дифманометр с пневмовыходом 0,02…0,1 МПа, марка ДС-П1 (для пневматики) или «Сапфир-22ДД» (для электрической схемы) 302-1 Ротаметр РД-П (с пневмовыходом) или РД-Э (с электрическим выходом) 1 Индикация и регистрация расхода ( FQIR , рисунок 16) 303-1 то же, что 301-1 303-2 Вторичный прибор — дифманометр ДСС-712Н.
2 Индикация и регистрация расхода ( FIR , электрическая ветвь, рисунок 17) 304-1 то же, что 301-1 304-2 Дифманометр с эл. выходом 0 – 5 мА «Сапфир-22ДД» 304-3 то же, что 101-3
3 Индикация, регистрация и регулирование расхода ( FIRC , пневматика, рисунок 18) 305-1 то же, что 301-1 305-2 Дифманометр с пневмовыходом 0,02…0,1 МПа, марка ДС-П1 305-3 то же, что 102-4 305-4 то же, что 102-5 305-5 то же, что 103-3
4 Каскадно-связанное (многоконтурное) регулирование расхода с коррекцией по уровню ( FIRC , LIRC , пневматика, рисунок 19) 306-1 Преобразователь уровня 13УБ08 306-2 Вторичный прибор со станцией управления ПВ 10.1Э 306-3 Регулятор пневматический ПР 3.31 307-1 Диафрагма камерная ДК 6-50 307-2 Преобразователь расхода 13ДДП 307-3 Вторичный прибор со станцией управления ПВ 10.1Э 307-4 Регулятор пневматический ПР 3.31 307-5 Переключатель 307-6 То же, что 103-3
Примечание - Переключатель обеспечивает переход на одноконтурное регулирование уровня. Для получения схемы регулирования расхода без коррекции по уровню, а также для ручного регулирования используется станция управления в приборе 307-3 (переключатель находится в положении многоконтурного регулирования). Таблица 3 - Форма спецификации к ФСА
Примечание - Приборы в спецификации могут быть сгруппированы по позициям на схеме или по маркам. Таблица 4 - Примеры изображения контуров контроля на технологических схемах
Продолжение таблицы.4
Примеры условных обозначений приборов и средств автоматизации
Автоматизированные системы управления• На объектах Киришского нефтеперерабатывающего завода (ООО «КИНЕФ», г. Кириши, Ленинградская обл.): |
Работы, похожие на Учебное пособие: Методические указания по выполнению курсовой работы