Реферат: Периодичность в развитии естествознания
Название: Периодичность в развитии естествознания Раздел: Остальные рефераты Тип: реферат |
Содержание
Периодичность в развитии естествознания. 4 Основные естественнонаучные революции и их характер. 7 Список используемой литературы.. 12 Естествознание — неотъемлемая и важная часть духовной культуры человечества. Знание его современных фундаментальных научных положений, мировоззренческих и методологических выводов является необходимым элементом общекультурной подготовки специалистов в любой области деятельности. Поэтому, изучение естественных наук – важный фактор для подготовки современных образованных специалистов. Изучение современной науки необходимо начинать с изучения истоков – потому что именно там закладывались ее основы. Историю развития естествознания можно проследить с VI в. до н.э. Начиная с эпохи Коперника история естествознания рассматривается в свете научных революций, связанных с выявлением фундаментальных принципов природы. Этапов выделяют иногда три-четыре, иногда более десяти. Переходы от этапа к этапу и от одной научной революции к другой не похожи на триумфальное шествие человеческой мысли. Основные направления ее развития возникали в результате перебора многих «окольных путей», отступлений, «периодов топтания на месте». Периодичность в развитии естествознания. История естествознания стоит в неразрывной связи с историей всего общества, и каждому типу и уровню развития производительных сил, техники отвечает своеобразный период в истории естествознания. Как самостоятельное, систематическое исследование природы естествознание возникло во 2-й половине 15 в.; более ранние периоды естественно-научных знаний можно рассматривать как зачаточные, или подготовительные, к систематическому изучению природы. Соответственно выделяются следующие периоды. Натурфилософский период естествознания Первый подготовительный — Натурфилософский период естествознания (зарождение элементов будущего естествознания)—характерен для древности. В целом техника была ещё слабо развита, хотя имелись уже отдельные выдающиеся технические достижения. Начали складываться в самостоятельные отрасли знания статика и астрономия и обслуживающая их математика. Позднее стала выделяться химия (в форме алхимии). Анатомия, медицина, физика находились в зачаточном состоянии. Все естественно-научные знания и воззрения входили в единую недифференцированную науку, находившуюся под эгидой философии. Дифференциация наук впервые наметилась в конце этого периода (александрийская наука). Период схоластики, теологии и спорадических открытий Второй период характеризуется господством схоластики и теологии в Западной Европе и спорадическими открытиями у арабоязычных народов. Наука на Западе стала придатком теологии (астрология, алхимия, магия, кабалистика чисел). Прогресс техники на Западе совершался крайне медленно. Техника почти не нуждалась в систематическом изучении природы, а потому и не оказывала заметного влияния на развитие естественно-научных знаний. Но и в это время, хотя и замедленно, шло накопление новых фактов, подготовивших переход к следующему периоду. В целом это была переходная полоса между первой и второй фазами общего хода естествознания. Период механического и метафизического естествознания Период механического и метафизического естествознания, начавшийся с возникновения естествознания как систематической экспериментальной науки в эпоху Возрождения, отвечает времени становления и утверждения капиталистических отношений в Западной Европе (со 2-й половине 15 в. до конца 18 в.). Естествознание этого периода революционно по своим тенденциям. Здесь выделяется естествознание начала 17 в. (формирование механического естествознания — Г. Галилей) и конца 17 в. — начала 18 в. (завершение этого процесса — И. Ньютон). Т. к. господствующим методом мышления стала метафизика, этот период можно назвать метафизическим. Но уже тогда в естествознании делались открытия, в которых обнаруживалась диалектика. Естествознание было связано с производством, превращавшимся из ремесла в мануфактуру, энергетической базой которой служило механическое движение. Отсюда вставала задача изучать механическое движение, найти его законы. Мореплавание нуждалось в небесной механике, военное дело — в разработке баллистики. Естествознание было механическим, поскольку ко всем процессам природы прилагался исключительно масштаб механики. Но уже создание в 17—18 вв. в математике анализа бесконечно малых (И. Ньютон, Г. Лейбниц) и аналитической геометрии (Р. Декарт), космогоническая гипотеза Канта — Лапласа, атомно-кинетическое учение М. В. Ломоносова, идея развития в биологии К. Вольфа подготовляли крушение метафизического взгляда на природу. Основным противоречием естествознания всего этого периода было то, что "революционное на первых порах естествознание оказалось перед насквозь консервативной природой..." (Энгельс Ф.). Период открытия всеобщей связи и утверждения эволюционных идей в естествознании характеризуется стихийным проникновением диалектики в естествознании, так что его можно также назвать стихийно-диалектическим. Промышленность вступает в фазу крупного машинного производства, начавшегося в конце 18 в.— технический и промышленный переворот. Энергетической базой промышленности становится паровой двигатель, и преимуществ, развитие механики перестаёт удовлетворять потребности производства. На первый план выдвигаются физика и химия, изучающие взаимопревращения форм энергии и видов вещества (химическая атомистика). В геологии возникает теория медленного развития Земли (Ч. Лайель), в биологии зарождается эволюционная теория (Ж. Ламарк), палеонтология (Ж. Кювье), эмбриология (К. М. Бэр). Возникла необходимость сочетать анализ с синтезом в целях теоретического охвата накопленного опытного материала. Три великих открытия (2-я треть 19 в.)—клеточная теория, учение о превращении энергии и дарвинизм — нанесли окончат, удар по старой метафизике. Затем последовали открытия, раскрывавшие диалектику природы полнее: создание теории химического строения органических соединении (А. М. Бутлеров, 1861), периодической системы элементов (Д. Н. Менделеев, 1869), химическая термодинамики (Я. X. Вант-Гофф, Дж. Гиббс), основ научной физиологии (И. М. Сеченов, 1863), электромагнитной теории света (Дж. К. Максвелл, 1873). Но, делая открытия, подтверждающие диалектику, естествоиспытатели продолжали мыслить метафизически. «...Этот конфликт между достигнутыми результатами и укоренившимся способом мышления...» составил основное противоречие естествознания данного периода — разрыв между объективной и субъективной его сторонами, его содержанием (его открытиями) и формой мышления самих учёных. Периодом «научной революции» иногда называют время между 1543 и 1687 гг. Первая дата соответствует публикации Н. Коперником работы «Об обращениях небесных сфер»; вторая — И. Ньютоном «Математические начала натуральной философии». Все началось с астрономической революции Коперника, Тихо Браге, Кеплера, Галилея, которая разрушила космологию Аристотеля — Птолемея, просуществовавшую около полутора тысяч лет. Þ Коперник поместил в центр мира не Землю, а Солнце; Þ Тихо Браге — идейный противник Коперника — движущей силой, приводящей планеты в движение, считал магнетическую силу Солнца, идею материального круга (сферы) заменил современной идеей орбиты, ввел в практику наблюдение планет во время их движения по небу; Þ Кеплер, ученик Браге, осуществил наиболее полную обработку результатов наблюдений своего учителя: вместо круговых орбит ввел эллиптические он количественно описал характер движения планет по этим орбитам; Þ Галилей показал ошибочность различения физики земной и физики небесной, доказывая, что Луна имеет ту же природу, что и Земля, и формируя принцип инерции. Обосновал автономию научного мышления и две новые отрасли науки: статику и динамику. Он «подвел фундамент» под выдающиеся обобщения Ньютона, которые мы рассмотрим далее. Þ Данный ряд ученых завершает Ньютон, который в своей теории гравитации объединил физику Галилея и физику Кеплера. В течение этого периода изменился не только образ мира. Изменились и представления о человеке, о науке, об ученом, о научном поиске и научных институтах, об отношениях между наукой и обществом, между наукой и философией, между научным знанием и религиозной верой. Выделим во всем этом следующие основные моменты. 1. Земля, по Копернику, — не центр Вселенной, созданной Богом, а небесное тело, как и другие. Но если Земля — обычное небесное тело, то не может ли быть так, что люди обитают и на других планетах? 2. Наука становится не привилегией отдельного мага или просвещенного астролога, не комментарием к мыслям авторитета (Аристотеля), который все сказал. Теперь наука — исследование и раскрытие мира природы, ее основу теперь составляет эксперимент. Появилась необходимость в специальном строгом языке. 3. Наиболее характерная черта возникшей науки — ее метод. Он допускает общественный контроль, и именно поэтому наука становится социальной. 4. Начиная с Галилея наука намерена исследовать не что, а как, не субстанцию, а функцию[1] . Научная революция порождает современного ученого-экспериментатора, сила которого — в эксперименте, становящемся все более и более точным, строгим благодаря новым измерительным приборам. Новое знание опирается на союз теории и практики, который часто получает развитие в кооперации ученых, с одной стороны, и техников и мастеров высшего разряда (инженеров, художников, гидравликов, архитекторов и т.д.) — с другой. Возникновение нового метода исследования – научного эксперимента оказало огромное влияние на дальнейшее развитие науки. Основные естественнонаучные революции и их характер В истории естествознания процесс накопления знаний сменялся периодами научных революций, когда происходила ломка старых представлений и взамен их возникали новые теории. Крупные научные революции связаны с такими достижения человеческой мысли, как: - учение о гелиоцентрической системе мира Н. Коперника, - создание классической механики И. Ньютоном, - ряд фундаментальных открытий в биологии, геологии, химии и физике в первой половине XIX столетия, подтвердившие процесс эволюционного развития природы и установившие тесную взаимосвязь многих явлений природы, - крупные открытия в начале XX столетия в области микромира, создание квантовой механики и теории относительности. Рассмотрим эти основные достижения. R Польский астроном Н. Коперник в труде «Об обращении небесных сфер» предложил гелиоцентрическую картину мира вместо прежней птолемеевой (геоцентрической). Она явилась продолжением космологических идей Аристотеля, и на нее опиралась религиозная картина мира. Заслуга Н. Коперника состояла также в том, что он устранил вопрос о «перводвигателе» движения во Вселенной, так как, согласно его учению, движение является естественным свойством всех небесных и земных тел. Вполне понятно, что его учение не соответствовало мировоззрению католической церкви, и с этого времени начинается противостояние науки и церкви по главным вопросам, касающимся природы. «Трудно переоценить значение и влияние гелиоцентрической картины мира на все естественные науки. Это было поистине яркое событие в истории естествознания: вместо прежнего неверного каркаса мироздания была введена истинная система координат околоземного космоса»[2] . R Сравнимые по масштабу перемены в теоретической физике произошли в XVII в. Был осуществлен переход от аристотелевой физики к ньютоновой, которая господствовала в западной науке в течение трех столетий. Используя эту модель, физика достигла прогресса и выгодно отличалась от других дисциплин. Ее законы приобрели математическую формулировку, она доказала свою эффективность при решении многих проблем. С тех пор западная наука добилась крупных успехов и стала мощной силой, преобразующей мир. К тому же она определенным образом формировала мировоззрение ученых. Вступала в силу механистическая картина мира. R Говоря о создании механики Ньютоном, нельзя не упомянуть имя Галилео Галилея , который стоял у ее истоков. Его принцип инерции был крупнейшим достижением человеческой мысли: предложив его миру, он решил фундаментальную проблему — проблему движения. Уже одного этого открытия было бы достаточно для того, чтобы Галилей стал выдающимся ученым Нового времени. Однако его научные результаты разнообразны и глубоки. Он исследовал свободное падение тел и установил, что скорость свободного падения тел не зависит от их массы (в отличие от Аристотеля) и траектория брошенного тела представляет собой параболу. Известны его астрономические наблюдения Солнца, Луны, Юпитера. В работе «Диалог о двух системах мира — Птолемеевой и Коперниковой» он доказал правильность гелиоцентрической картины мира, утверждению которой способствовали передовые ученые того времени. R Первый закон механики Ньютона — это принцип инерции, сформулированный Галилеем. Во втором законе механики Ньютон утверждает, что ускорение, приобретаемое телом, прямо пропорционально приложенной силе и обратно пропорционально массе этого тела. И третий закон механики Ньютона есть закон действия и противодействия: действия двух тел друг на друга всегда равны по величине и противоположны по направлению. И еще один закон, предложенный Ньютоном, закон всемирного тяготения , звучит так: все тела взаимно притягиваются прямо пропорционально их массам и обратно пропорционально квадрату расстояния между ними. Это — универсальный закон природы, на основе которого была построена теория Солнечной системы. «Механика Ньютона поражает своей простотой. Она имеет дело с материальными точками и расстояниями между ними и, таким образом, является идеализацией реального физического мира. Но благодаря этой простоте стало возможным построение замкнутой механической картины мира. Его теория использовала строгий математический аппарат и опиралась на научный эксперимент. Именно такая тенденция наметилась в физике после его работ»[3] . Благодаря трудам Галилея и Ньютона XVIII век считается началом того длительного периода времени, когда господствовало механистическое мировоззрение. R Развитие биологии в XVIII веке также не обходилось без революционных открытий в то время шло своим путем: Þ Г. Мендель (1822-1884) открыл законы наследственности, скрещивая семена гороха в течение восьми лет. Þ Исследуя бактерии, Л. Пастер показал, что они присутствуют в атмосфере, распространяются капельным путем и их можно разрушить высокой температурой. В XIX в. микробиология помогала побеждать инфекционные болезни. Þ Итогом развития эволюционной концепции стала работа Ч. Дарвина (1809— 1882) «Происхождение видов путем естественного отбора» (1859). Эта теория имела такое же влияние на умы людей, какое в свое время имела теория Коперника. Это была научная революция в области биологии. Можно сказать, что коперниковская революция указала место человека в пространстве, а теория Дарвина определила место человека во временной шкале мира. R Следующая научная революция, после которой резко изменилась система взглядов и подходов, также связана с физикой. Это произошло в конце XIX — начале XX столетия. Толчком к построению новой физической картины мира послужил ряд новых экспериментальных фактов, которые не могли быть описаны в рамках старых теорий, как это обычно бывает в науке. К таким фактам относятся прежде всего: - исследования Фарадея по электрическим явлениям , - работы Максвелла и Герца по электродинамике , - изучение явления радиоактивности Беккерелем, - открытие первой элементарной частицы (электрона) Томсоном и т.д. Проникая в область микромира, физики столкнулись с неожиданными проявлениями физической реальности, для описания которой возникла потребность в новой теории, ибо сделать это с помощью классической механики не удавалось. Поэтапно, благодаря работам ряда физиков и главным образом Бора, Гейзенберга, Шредингера, Планка, де Бройля и других, была построена физическая теория микромира, создана квантовая механика . Согласно этой теории, движение микрочастиц в пространстве и времени не имеет ничего общего с механическим движением макрообъектов и подчиняется соотношению неопределенностей: если известно положение микрочастицы в пространстве, то остается неизвестным ее импульс и наоборот. R В 1905 г. А. Эйнштейн создал специальную теорию относительности , в которой свойства пространства и времени связаны с материей и вне материи теряют смысл. Эта теория дает преобразование пространственных и временных координат тел, которые двигаются со скоростями, сравнимыми со скоростью света. Вторая часть теории, которая называется общей теорией относительности, связывает присутствие больших гравитационных полей (или массы) с искривлением пространства. Эта часть теории используется в космологических моделях. Итак, историческое развитие человечества постоянно сопровождалось развитием науки. Ученые, внесшие свой вклад в развитие науки, были яркими личностями - они сочетали в себе профессиональные качества в своей области с высокой культурой духа. Новые теории строились на основе не только строгого разума, но и высокой степени интуиции. С тех пор прошло уже много времени. Современная наука быстро прогрессирует и научные открытия совершаются на наших глазах. Современное естествознание представляет собой сложную, разветвленную систему множества наук. Ведущими науками XX в. по праву можно считать физику, биологию, науки о космосе, прикладную математику (неразрывно связанную с вычислительной техникой и компьютеризацией), кибернетику, синергетику. Но не только последние научные данные можно считать современными, а все те, которые входят в толщу современной науки, образуя ее краеугольные камни, поскольку наука не состоит из отдельных, мало связанных между собой теорий, а представляет собой во многом единое целое, состоящее из разновременных по своему происхождению частей. Список используемой литературы 1. Горелов А.А. Концепция современного естествознания. - М.: ЦЕНТР, 2000. 2. Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания. — М.: Аспект Пресс, 2000. 3. Кокин А.В. Концепции современного естествознания. – М.: «ПРИОР», 1998. 4. Концепции современного естествознания /Под ред. В.Н. Лавриненко, В.П. Ратникова. — М.: ЮНИТИ-ДАНА, 2000. 5. Кун Т. Структура научных революций. - М., 1975. 6. Мотылева Л.С. и др. Концепции современного естествознания. — Спб.: Союз, 2000. 7. Пуанкаре А. О науке. – М., 1983. 8. Селье Г. От мечты к открытию. – М., 1987. 9. Солопов Е.Ф. Концепции современного естествознания. — М.: Гуманит. изд. центр ВЛАДОС, 1998. [1] Кун Т. Структура научных революций. - М., 1975 г., с. 65. [2] Кун Т. Структура научных революций. - М., 1975 г., с. 66. [3] Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания: Учебн. пособие для вузов. — М.: Аспект Пресс, 2000. — с. 44. |