Учебное пособие: Методические указания к выполнению Лабораторной работы №8 по дисциплине
Название: Методические указания к выполнению Лабораторной работы №8 по дисциплине Раздел: Остальные рефераты Тип: учебное пособие ![]() | ||||||||||||||||||||||||||||||||||||||
Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Федеральное государственное образовательное учреждение Среднего профессионального образования Уфимский техникум железнодорожного транспорта
МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению Лабораторной работы № 8 по дисциплине Перегонные системы автоматики
Тема: Исследование и анализ работы схемы контроля блок-участка в системе АБТ
Разработал преподаватель дисциплины: Перегонные системы автоматики С.А. Войнов
ОДОБРЕНО Цикловой комиссией Специальности 190701 Войнов С. А. Методические указания к выполнению лабораторной работы № 8 по дисциплине Перегонные системы автоматики для специальности 220204 Автоматика и телемеханика на транспорте (по видам транспорта) ( на железнодорожном транспорте). Уфа: ИВЦ УТЖТ, 2007.- 12с. Методические указания для студентов очного и заочного отделений к выполнению лабораторной работы № 8 по дисциплине «Перегонные системы автоматики». Исследование и анализ работы схемы контроля блок-участка в системе АБТ. Содержит пошаговый материал по разделам лабораторной работы для изучения принципов работы схемы контроля блок-участка в системе АБТ Автор: Войнов С.А.- преподаватель спец. дисциплин Уфимского техникума железнодорожного транспорта. Рецензенты: Р.Р. Юсупов – кандидат технических наук, зав. кафедры «О и ПД» филиала Сам ГУПС в г. Уфа. М.Р. Таймасова – зам. директора по научной работе Уфимского техникума железнодорожного транспорта. Ответственный за выпуск: Вильман С.В. © ИВЦ УТЖТ Лабораторная работа № 8 Тема: Исследование и анализ работы схемы контроля блок-участка в системе АБТ. Цель: Закрепить знания о работе схемы контроля блок-участка в системе АБТ. Оборудование: Принципиальная электрическая схема схемы двухпутной автоблокировки типа АБТ-2-91. 1 Теоретический материал
1.1 Аппаратура автоблокировки Полная принципиальная схема сигнальной установки, как правило, включает в себя цепи смены направления, двойного снижения напряжения и линейные схемы управления огнями светофора, включение сигнальных реле, схемы питающих устройств контрольных цепей ЧДК и выбора кодовых сигналов АЛС, цепи подачи извещения, Т-ОТ , М-ОМ , схемы тональных рельсовых цепей ТРЦ3 и ТРЦ4 , а так же цепи устройств связи. Вся указанная на этих схемах аппаратура располагается в релейном шкафу. Назначение реле и приборов: Н - реле направления, фиксирующее установленное направление движения. ПН1, ПН2 – повторители реле направления, переключающие линейные цепи, цепи кодирования для работы устройств в зависимости от установленного направления движения. Л1, Л2 – линейные реле. КВ – реле включения посылки сигналов АЛС. ДСН- реле режима двойного снижения напряжения Ж1, Ж2 – реле , контролирующие свободность блок-участка за путевым светофором и защитного участка за следующим по ходу движения светофором. З – реле контролирует свободность за путевым светофором двух и более блок-участков. КО – реле, контролирующее горение лампы красного огня при запрещающем показании светофора. КО1 – реле , контролирующее исправность основной нити красной лампы. КО2 – реле , контролирующее исправность резервной нити красной лампы. РО – контролирует исправность основных нитей ламп желтого и зеленого огня при их включении. ЖО – контролирует горение лампы разрешающего огня на путевом светофоре (для предвходной сигнальной установки). Т- трансмиттерное реле, включающее коды сигналов числовой АЛС в РЦ; ГК – генератор частотного диспетчерского контроля типа ГКШ, передающий на станцию информацию о свободности (занятости) блок-участка, а так же информацию о наличии неисправности в устройствах. А – реле контроля наличия основного питания в РШ сигнальной установке. А1 – реле контроля наличия резервного питания в РШ сигнальной установки. КПТ – кодовый путевой трансмиттер , типа КПТШ-515 ; А2ПО, А2ПД – основное и дополнительное путевые реле ТРЦ3; А1ПО, А1ПД – основное и дополнительное путевые реле ТРЦ4; АП1,АП2 – основное и дублирующее реле ТРЦ3 и ТРЦ4 ; Б1ПО, Б1ПД – основное и дополнительное путевое реле ТРЦ4 ; Б2ПО, Б2ПД – основное и дополнительное путевое реле ТРЦ3; БП1, БП2 – основное и дублирующее реле ТРЦ3 и ТРЦ4 за путевым светофором. 1Г – генератор сигналов рельсовой цепи типа ГРЦ4 , предназначен для формирования и усиления амплитудно-модулированных сигналов рельсовых цепей с несущими частотами в диапазоне 5 кГц и частотами модуляции 8 и 12Гц. 1Ф – фильтр питающего конца типа ФРЦ4 ограничивает спектр амплитудно-модулированного сигнала поступающего с ГРЦ4 и защищает его от перенапряжений, возникающих в рельсовой линии. А1ПП, Б1ПП – приемник сигналов рельсовой цепи ПРЦ4, предназначен для приема амплитудно-модулированных сигналов из рельсовой цепи ГРЦ4. Выполнен на плате реле ДСШ. 2Г – генератор путевой (типа ГП 8, 9, 11) сигналов контроля рельсовой цепи предназначен для формирования и усиления амплитудно-модулированных сигналов рельсовой цепи с несущими частотами 420, 480 и 580 Гц и частотами модуляции 8 и 12 Гц. А2ПП, Б2ПП – приемник путевых сигналов ПП, предназначен для приема амплитудно-модулированных сигналов из рельсовой цепи ТРЦ3.
1.2 Работа схемы автоблокировки при установленном направлении движения Схемы рельсовых цепей одной СУ в наиболее распространенном варианте их применения приведены на рис.1. В зависимости от длины БУ, наличия переезда и его удаленности от сигнальной точки может измениться количество аппаратуры ТРЦ или ее подключение. Например, параметры аппаратуры позволяют последовательно подключать к одной паре жил не только два приемника, но и приемник ТРЦ4 с передающей аппаратурой ТРЦ3. Но в любом случае схемы рельсовых цепей остаются неизменными. Для питания рельсовых цепей А1П/Б1П в релейном шкафу установлен генератор ГП4 с фильтром ФРЦ4Л, а для рельсовых цепей А2П/Б2П ‑ генератор ГП3/8,9,11 с фильтром ФПМ8,9,11. При проектировании АБТ в схемах ТРЦ для каждого генератора и фильтра указывают внешние настроечные перемычки в соответствии с требуемой комбинацией частот, а в регулировочных таблицах ‑ напряжения на выходе генератора в зависимости от длины РЦ. Величина сопротивления резистора в РЦ выбирается исходя из длины соединительного кабеля и удельного сопротивления его жил таким образом, чтобы получить в сумме 400 Ом. В качестве согласующего трансформатора используется ПОБС-2А с коэффициентом трансформации n=38. Защитные резисторы Rз предусмотрены во всех УСЗ, кроме места установки дроссель-трансформаторов. В настоящее время вместо двух параллельно включаемых регулируемых проволочных резисторов рекомендуется использовать более надежные и долговечные резисторы РПН (резистор постоянный низкоомный). Эти резисторы выпускаются на номинальные сопротивления от 0,11 Ом до 0,5 Ом. Подключение питающих жил ТРЦ4 рекомендуется производить не к рельсам, а непосредственно к выводам основной обмотки ДТ. Этим обеспечивается контроль целости дроссельных перемычек. В соответствии с методическими указаниями И-206-91 в системе АБТ применялись дроссель-трансформаторы ДТ-0,6 с разомкнутой дополнительной обмоткой. В настоящее время начато производство более дешевых и удобных в эксплуатации сухих дросселей типа ДП-20, ДП-150 и ДП-300, которые рассчитаны на пропускание уравнивающего постоянного тягового тока до 20, 150 и 300 А соответственно. Кроме того, у дросселей предусмотрены выводы средней точки обмотки для организации заземления металлических конструкций. Для участков с тягой переменного тока разработаны аналогичные дроссели Д-20, Д-150 и Д-300. Дроссели ДП-20 и Д-20 имеют малые габариты, применяются только для выравнивания тягового тока и устанавливаются в путевых ящиках. Разновидности путевых приемников ПП1 и ПРЦ4Л1 выбираются в зависимости от принятой комбинации частот питания конкретных РЦ и указываются на схемах ТРЦ. В соответствии с этим выбираются и указываются номера выводов для подключения основных путевых реле А1ПО, А2ПО, Б1ПО и Б2ПО. Дублирующие путевые реле А1ПД, А2ПД, Б1ПД и Б2ПД подключаются к приемникам через блок выпрямителей сопряжения БВС4Л. Этим обеспечивается управление путевыми реле через разные выходные цепи путевого приемника, что должно способствовать повышению безопасности работы схемы. Ранее применялись путевые реле типа АНШ2-1230 с параллельным включением обмоток, что обеспечивало напряжение срабатывания реле 3,5 В. В настоящее время, рекомендуются к использованию новые реле типа АНШ2-310 с последовательным включением обмоток. Состояние участка пути, оборудованного рельсовыми цепями А1П и А2П, контролируется общими повторителями основных и дополнительных путевых реле этих РЦ. Дублированные повторители АП1 и АП2 включены по схеме с двухполюсным размыканием (см. рис. 4.3). Для рельсовых цепей Б1П и Б2П применена аналогичная схема. Схемные зависимости в системе АБТ осуществляются этими повторителями. В системе АБТ для передачи информации на локомотив предусмотрена числовая АЛС. Кодирование рельсовых цепей блок-участка производится от впередистоящей СУ по соединительным жилам кабеля рельсовых цепей по мере вступления на них поезда (см. рис. 2). Для этого предусмотрено поочередное подключение схемы кодирования к жилам кабеля параллельно конденсатору СК1. Причем рельсовые цепи Б1П и Б2П кодируются совместно путем подачи кодового сигнала по питающим жилам П(П, М) (точки 1‑2). Формирование кодовых сигналов осуществляет кодовый путевой трансмиттер КПТ типа КПТШ-515, а выбор требуемого кодового сигнала ‑ контакты сигнальных реле Ж1 (Ж2) и З. Трансмиттерное реле Т, работая в такт с импульсами выбранной кодовой комбинации, модулирует ток вторичной обмотки кодирующего трансформатора ТК типа ПОБС-3А (см. рис. 2). Напряжение на вторичной обмотке трансформатора ТК устанавливается в соответствии с регулировочными таблицами. Вступление головы поезда за светофор предыдущей СУ фиксируется кодововключающим реле КВ по линейной цепи Л-ОЛ. Оно встает под ток и своими контактами включает кодовый сигнал в точки 1‑2. По мере вступления поезда на рельсовые цепи А2П и А1П обесточиваются путевые реле этих РЦ и поочередно подключают кодовый сигнал в точки 3‑4 и 5‑6. При этом кодирование каждой предыдущей рельсовой цепи прекращается. При движении поезда по неправильному пути контакты реле направления Н перестраивают схему кодирования, что обеспечивает последовательное подключение кодовых сигналов в точки 7‑8, 9‑10, 5‑6. Как уже отмечалось, для кодирования рельсовых цепей А2П и А1П в этом случае предусмотрены отдельные жилы кабеля КП1-КМ1. Для подключения этих жил в путевом ящике Б2П/А2П устанавливается конденсатор, который при правильном направлении движения шунтируется тыловым контактом ПН1 в релейном шкафу предыдущей СУ (см. рис. 1). Назначение каждой линейной цепи указано в п. 2. В данном пункте рассматривается схема цепи Л-ОЛ, обеспечивающая логическую связь между проходными светофорами и управление кодововключающим реле. Для примера рассмотрим цепь между сигнальными установками 4 и 2 светофоров (рис. 2).
Сообщения формируются и передаются от 2-й СУ к 4-й следующим образом: · о состоянии светофора 2 (открыт или закрыт) ‑ контактами дублированных сигнальных реле Ж1, Ж2 (подается ток прямой или обратной полярности); · о состоянии рельсовых цепей А1П и А2П блок-участка 4П – контактами дублированных реле АП1, АП2 (при занятости любой из этих РЦ цепь Л-ОЛ разрывается); · о состоянии защитного участка ‑ контактами реле БП1, БП2 (повторители путевых реле рельсовых цепей Б1П и Б2П за светофором 4). При занятом защитном участке линейная цепь разрывается. Этим обеспечивается включение красного огня на светофоре 4 даже при свободном 4П и исключаются последствия при проезде поездом запрещающего сигнала; · о неисправности лампы красного огня ‑ контактами огневого реле КО, которые при перегорании обеих нитей лампы красного огня обрывают линейную цепь. Кроме того, в линейную цепь Л-ОЛ на 4-й сигнальной установке введены контакты реле БП1 и БП2, контролирующих состояние рельсовых цепей Б1П и Б2П блок-участка 2П. Введение в схему линейной цепи кодововключающего реле КВ и шунтирующих цепочек через тыловые контакты реле А… и Б… позволило передавать информацию от 4СУ на 2СУ о вступлении поезда на блок-участок 4П . При отсутствии поезда ток, протекающий по цепи Л-ОЛ через достаточно большое сопротивления обмоток реле Л1 и Л2, недостаточен для срабатывания реле КВ. При вступлении головы поезда за 4-й светофор реле БП1, БП2 шунтируют обмотки реле Л1 и Л2, ток увеличивается и реле КВ притягивает свой якорь. При освобождении рельсовых цепей Б возбужденное состояние реле КВ сохраняется за счет шунтирующей цепочки через тыловые контакты реле АП1, АП2. Контакты реле КВ в шунтирующей цепи исключают передачу на локомотив, следующий по блок-участку 6П, кодового сигнала от 2СУ при ложной занятости или изломе рельса на 4П. Этим обеспечивается соответствие показаний напольного и локомотивного светофоров. При смене направления движения линейная цепь коммутируется контактами реле ПН1 для передачи информации в противоположном направлении. В системе АБТ предусмотрены двухнитевые лампы для всех огней светофора (рис. 3). При неисправности основных нитей происходит автоматическое подключение питания к резервным нитям ламп, а при перегорании обеих нитей лампы красного огня закрытого светофора производится "перенос" красного огня на предыдущий светофор. Выбор огней светофоров осуществляется контактами сигнального реле З и дублированных сигнальных реле Ж1 и Ж2, состояния которых зависят от состояния линейных реле Л1, Л2. В схеме применено двухполюсное размыкание цепей питания ламп разрешающих огней . Кроме того, с целью повышения безопасности функционирования схемы она построена таким образом, что включение разрешающих огней происходит через последовательно включенные фронтовые контакты дублированных реле Ж1 и Ж2, а их выключение и включение запрещающего сигнала происходит при обесточивании любого из этих реле. Огневые реле выполняют следующие функции: · РО ‑ контроль основных нитей ламп разрешающих огней в горячем состоянии и включение резервных нитей; · КО1 ‑ контроль основной нити лампы красного огня в холодном и горячем состояниях и включение резервной нити; · КО2 ‑ контроль резервной нити лампы красного огня в холодном и горячем состояниях. Цепь контроля нитей ламп красного огня в холодном состоянии организована от источника С31-МС через последовательно включенные высокоомную и низкоомную обмотки огневого реле. При обесточивании любого из указанных реле информация о неисправности передается на ближайшую станцию по цепям диспетчерского контроля. Кроме того, при перегорании обеих нитей лампы красного огня закрытого светофора осуществляется процедура "переноса" красного огня на предыдущий светофор. Это реализуется с помощью реле КО, которое своими контактами разрывает линейную цепь Л-ОЛ. При смене направления движения контакт реле ПН2 отключает питание разрешающих огней светофора. Контакты реле Ж1 и ПН2 в цепи высокоомной обмотки реле РО исключают его ложное обесточивание при горении красного огня или при установленном встречном направлении движения. 2 Ход выполнения работы
Для выполнения процесса исследования схемы выполните следующие действия: А) Определите назначения реле в схеме автоблокировки; определить их функциональное участие в схеме; Б) Руководствуясь теоретическими сведениями, выясните, как происходит процесс работы схемы автоблокировки при правильном направлении движения; В) Определите по схеме автоблокировки функциональное назначение реле ЖЛ и ЗЛ; Г) Выясните, как происходит процесс работы схемы автоблокировки при неправильном направлении движения; Какие элементы схемы участвуют в этом режиме работы схемы автоблокировки; Д) Определите роль реле КВ, ПКВ и В на сигнальных установках; Е) Выделите, на основании пунктов А- Д, основные положения работы схемы двухпутной трехзначной автоблокировки АБТ; Ж) Ответьте на контрольные вопросы по вариантам; З) Составьте отчет о проделанной работе. 3 Контрольные вопросы На основании исследования схемы, ответьте на следующие контрольные вопросы по вариантам:
4 Литература
1. Перегонные системы автоматики. Учебник для техникумов и колледжей ж.д. транспорта/В.Ю. Виноградова, В.А. Воронин, Е.А. Казаков, Д.В. Швалов, Е.Е. Шухина; Под ред. В.Ю. Виноградовой.-М.: Маршрут, 2005. 2. Казаков А.А., Бубнов В.Д., Казаков Е.А. Автоматизированные системы интервального регулирования движения поездов: Учебник для техникумов ж.д. транспорта. М.: Транспорт, 1995. 3. Казаков А.А., Бубнов В.Д., Казаков Е.А. Системы интервального регулирования движения поездов: Учебник для техникумов ж.д. транспорта. М.: Транспорт, 1986.
|