Учебное пособие: Методические указания по выполнению практических и лабораторных работ по статистике содержат требования по их выполнению, порядок расчетов вручную и с использованием ms excel, ппп statistica.
Название: Методические указания по выполнению практических и лабораторных работ по статистике содержат требования по их выполнению, порядок расчетов вручную и с использованием ms excel, ппп statistica. Раздел: Остальные рефераты Тип: учебное пособие ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ВВЕДЕНИЕ Методические указания по выполнению практических и лабораторных работ по статистике содержат требования по их выполнению, порядок расчетов вручную и с использованием MS Excel, ППП Statistica. Часть II методических указаний характеризует расчет показателей вариации: размаха вариации, квартилей и квартильного отклонения, среднего линейного отклонения, дисперсии и среднего квадратического отклонения, коэффициентов осцилляции, вариации, асимметрии, эксцесса и других. Расчет показателей вариации наряду с построением интервальных и дискретных вариационных рядов и расчетом средних величин, представленными в части I методических указаний, имеет большое значение для анализа рядов распределения. 1. ПРАКТИЧЕСКАЯ РАБОТА №3 РАСЧЕТ ПОКАЗАТЕЛЕЙ ВАРИАЦИИ Цель работы: получение практических навыков в расчете различных показателей (меры) вариации в зависимости от поставленных исследованием задач. Порядок выполнения работы: 1. Определить вид и форму (простая или взвешенная) показателей вариации. 2. Рассчитать показатели степени вариации для сгруппированных и несгруппированных данных и показатели формы распределения. 3. Сформулировать выводы. Пример расчета показателей вариации 1. Определение вида и формы показателей вариации. Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным относятся: размах вариации, квартильное отклонение, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение. Относительными показателями являются коэффициенты осцилляции, вариации, относительное линейное отклонение и т. д. Размах вариации (R) является наиболее простым измерителем вариации признака и определяется по следующей формуле:
где Квартильное отклонение (Q) – применяется для характеристики вариации признака в совокупности. Может использоваться вместо размаха вариации во избежание недостатков, связанных с использованием крайних значений.
где Квартили – это значения признака в ранжированном ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине Квартили определяются по формулам:
где Ме – медиана ряда;
В симметричных или умеренно асимметричных распределениях Q»2/3s. Так как на квартильное отклонение не влияют отклонения всех значений признака, то его использование следует ограничить случаями, когда определение среднего квадратического отклонения затруднительно или невозможно. Среднее линейное отклонение (
Дисперсия (
Среднее квадратическое отклонение (s) – наиболее распространенный показатель вариации, представляет собой квадратный корень из значения дисперсии.
Размах вариации, квартильное отклонение, среднее линейное и квадратическое отклонения – величины именованные, имеют размерность осредняемого признака. Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях вычисляются относительные показатели вариации. Базой для сравнения служит средняя арифметическая. Чаще всего относительные показатели выражаются в процентах и характеризуют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности. Коэффициент осцилляции рассчитывается по формуле:
Относительное линейное отклонение (линейный коэффициент вариации):
Относительный показатель квартильной вариации:
Коэффициент вариации:
Наиболее часто применяемый в статистике показатель относительной колеблемости – коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и как характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (Ефимова М.Р., Рябцев В.М. Общая теория статистики: Учебник М.: Финансы и статистика, 1991 г., стр. 105). Для получения приблизительного представления о форме распределения строят графики распределения (полигон и гистограмму). В практике статистического исследования приходится встречаться с самыми различными распределениями. При изучении однородных совокупностей имеем дело, как правило, с одновершинными распределениями. Многовершинность свидетельствует о неоднородности изучаемой совокупности, появление двух и более вершин говорит о необходимости перегруппировки данных с целью выделения более однородных групп. Выяснение общего характера распределения предполагает оценку степени его однородности, а также вычисление показателей асимметрии и эксцесса. Симметричным
является распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричных распределений средняя арифметическая, мода и медиана равны между собой. В связи с этим простейший показатель асимметрии
основан на соотношении показателей центра распределения: чем больше разница между средними Для сравнительного анализа степени асимметрии нескольких распределений рассчитывают относительный показатель As:
Величина показателя As может быть положительной и отрицательной. Положительная величина показателя указывает на наличие правосторонней асимметрии (правая ветвь относительно максимальной ординаты вытянута больше, чем левая). При правосторонней асимметрии между показателями центра распределения существует соотношение:
Рисунок 1 – Распределение: 1 – с правосторонней асимметрией; 2 – с левосторонней асимметрией. Другой показатель, предложенный шведским математиком Линдбергом, рассчитывают по формуле:
где П – процент тех значений признака, которые превосходят по величине среднюю арифметическую. Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка (в симметричном распределении его величина равна нулю):
где
σ – среднеквадратическое отклонение. Применение этого показателя дает возможность не только определить величину асимметрии, но и ответить на вопрос о наличии или отсутствии асимметрии в распределении признака в генеральной совокупности. Оценка степени существенности этого показателя дается с помощью средней квадратической ошибки, которая зависит от объема наблюдений n и рассчитывается по формуле:
Если отношение Для симметричных распределений рассчитывается показатель эксцесса (островершинности). Линдбергом предложен следующий показатель для оценки эксцесса:
где П – доля (%) количества вариантов, лежащих в интервале, равном половине среднего квадратического отклонения в ту или другую сторону от средней арифметической. Наиболее точным является показатель, использующий центральный момент четвертого порядка:
где
На рисунке 2 представлены два распределения: одно – островершинное (величина эксцесса положительная), второе – плосковершинное (величина эксцесса отрицательная). Эксцесс представляет собой выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения. В нормальном распределении отношение
Рисунок 2 – Распределение: 1,4 – нормальное; 2 – островершинное; 3 – плосковершинное Средняя квадратическая ошибка эксцесса рассчитывается по формуле:
где n – число наблюдений. Если Оценка существенности показателей асимметрии и эксцесса позволяет сделать вывод о том, можно ли отнести данное эмпирическое исследование к типу кривых нормального распределения. 2. Рассмотрим методику исчисления показателей вариации. Пример 1. Таблица 1 - Данные об объеме продаж валюты нескольких отделений Центробанка.
Определить средний объем продаж валюты по совокупности отделений, рассчитать абсолютные и относительные показатели вариации. Рассчитаем размах вариации: R = Для определения отклонений значений признака от средней и их квадратов строим вспомогательную таблицу: Таблица 2 – Расчетная таблица
Среднее значение находим по формуле средней арифметической простой:
Среднее линейное отклонение:
Дисперсия: Среднее квадратическое отклонение:
Рассчитаем относительные показатели вариации. Коэффициент осцилляции: Относительное линейное отклонение: Коэффициент вариации:
Таблица 3 – Расчетная таблица
Далее рассчитываем показатели асимметрии, эксцесса и их ошибки: Пример 2. Таблица 4 - Данные о товарообороте предприятий одной из отраслей промышленности.
Определить средний объем товарооборота, структурные средние, абсолютные и относительные показатели вариации и насколько фактическое распределение согласуется с нормальным (по показателям формы распределения). Для расчета показателей построим вспомогательную таблицу. Таблица 5 – Расчетная таблица
Размах вариации:
Среднее значение находим по формуле средней арифметической взвешенной:
В интервальных рядах распределения мода определяется по формуле:
В нашем случае мода будет равна:
В интервальном вариационном ряду медиана определяется по формуле:
В нашем случае медиана будет равна:
Квартильное отклонение:
где Квартили определяются по формулам:
Среднее линейное отклонение:
Дисперсия: Среднее квадратическое отклонение:
Рассчитаем относительные показатели вариации. Коэффициент осцилляции: Относительное линейное отклонение: Относительный показатель квартильной вариации: Коэффициент вариации:
Определим показатели формы распределения: 3. Формулировка выводов. Сформулируем выводы по рассчитанным показателям вариации примера 2, в котором представлен интервальный ряд распределения предприятий по объему товарооборота, млн. руб. Размах вариации свидетельствует о том, что разница между максимальным и минимальным значением составляет 40 млн. руб. Средний объем товарооборота – 30 млн. руб. Чаще всего встречающееся значение объема товарооборота в рассматриваемой совокупности предприятий – 31,4 млн. руб., причем 50% (40 предприятий) имеют объем товарооборота менее 30,5 млн. руб., а 50% свыше. Квартильное отклонение, равное 5, свидетельствует об умеренной асимметрии распределения, так как в симметричных или умеренно асимметричных распределениях Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности. Так, средняя величина колеблемости объема товарооборота предприятий отраслей промышленности составляет: по среднему линейному отклонению - 6,5 млн. руб. (абсолютное отклонение); по среднему квадратическому отклонению - 8,1 млн. руб. Квадрат отклонений индивидуальных значений признака от их средней величины равен 65. Разница между крайними значениями признака на 33,3% превышает среднее значение ( Относительное линейное отклонение ( По рассчитанным показателям асимметрии и эксцесса можно сделать вывод, что распределение плосковершинно (Ex < 0) и наблюдается левосторонняя асимметрия (As < 0). Асимметрия и эксцесс являются несущественными. 2. ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ Таблица 6 - Данные о производительности труда 10 рабочих
Рассчитать показатели вариации и показатели формы распределения, сделать соответствующие выводы. Таблица 7 – Данные о распределении населения по уровню среднедушевых денежных доходов в регионах страны
Определить показатели вариации и показатели формы распределения, сделать соответствующие выводы. |