Реферат: на тему: «вирусы»
Название: на тему: «вирусы» Раздел: Остальные рефераты Тип: реферат | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
школа №6 г.Муром ЭКЗАМЕНАЦИОННЫЙ РЕФЕРАТ НА ТЕМУ: «ВИРУСЫ» Выполнила :ученица 8 класса «А» Овчинниковой Екатерины Проверила: учитель биологии Ванюшина Наталья Геннадьевна 2010-2011 год. Содержание: Введение……………………………………………………………………. 4 1) История открытия и методы исследования вирусов…………………. 5 - Методы исследования вирусов…………………………………………. 7 2) Особенности строения и размножения вирусов……………………… 8 - Размножение вирусов…………………………………………………… 11 3) Многообразие вирусов и типы вирусных инфекций………………... 15 - Взаимодействие вирусов с клетками…………………………………... 19 - Медленные вирусные инфекции……………………………………….. 21 - Вирусы и рак……………………………………………………………... 22 - Полезные вирусы………………………………………………………… 26 - Реакция организма на проникновение вируса………………………… 27 4) Профилактика вирусных заболеваний………………………………… 31 Заключение…………………………………………………………………. 35 Литература………………………………………………………………….. 36 Приложения………………………………………………………………… 36 Цель: Изучить особенности строения вирусов, как неклеточной формы жизни. План: Введение 1)История открытия и методы исследования вирусов. 2) Особенности строения и размножения вирусов. 3)Многообразие вирусов и типы вирусных инфекций. 4)Профилактика вирусных заболеваний. Введение. Вирусы – мельчайшие возбудители многочисленных инфекционных заболеваний человека, животных, растений и бактерий. Являются внутриклеточными паразитами, не способными к жизнедеятельности вне живых клеток. Человек встречается с вирусами, прежде всего, как с возбудителями наиболее распространенных болезней, поражающих все живое на Земле: людей, животных, растении и даже одноклеточные организмы – бактерии, грибы, простейших. Резко возрос удельный вес вирусных инфекций в инфекционной патологии человека – он достиг почти 80%. Это объясняется, по меньшей мере, тремя причинами: - Во-первых, существуют успешные меры борьбы с инфекциями другого происхождения (например, высокоэффективные антибиотики при бактериальных инфекциях), и на этом фоне значительно изменилось соотношение между вирусными и бактериальными инфекциями; - Во-вторых, увеличилось абсолютное число заболеваний некоторыми вирусными инфекциями (например, вирусный гепатит); - В-третьих, разрабатываются новые и улучшаются существующие методы диагностики вирусных инфекций, повышается порог их чувствительности. -В результате «открыты» новые инфекции, которые, конечно, существовали и раньше, но оставались нераспознанными. I. История открытия и методы исследования вирусов Рисунок 1. – Ивановский Д.И. В 1852 г. русский ботаник Д.И. Ивановский впервые получил инфекционный экстракт из растений табака, пораженных мозаичной болезнью. Когда такой экстракт пропустили через фильтр, способный задерживать бактерии, отфильтрованная жидкость все еще сохраняла инфекционные свойства. В 1898 г. голландец Бейеринк придумал новое слово вирус, чтобы обозначить этим термином инфекционную природу некоторых профильтрованных растительных жидкостей. Хотя удалось достигнуть значительных успехов в получении, высокоочищенных проб вирусов и было установлено, что по химической природе это нуклеопротеины, сами частицы все еще оставались неуловимыми и загадочными, потому что они были слишком малы, чтобы их можно было увидеть с помощью светового микроскопа. Поэтому-то вирусы и оказались в числе первых биологических структур, которые были исследованы в электронном микроскопе сразу же после его изобретения в 30-е годы нашего столетия. Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно — ящура, был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году, при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком, он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде, это название и стало обозначать данную группу микроорганизмов. В 1901 году было обнаружено первое вирусное заболевание человека — жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами. В 1911 году Фрэнсис Раус доказал вирусную природу рака — саркомы Рауса (лишь в 1966 г, спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине). Эксперимент Херши. Эксперимент проводился на бактериофаге T2, структура которого к тому времени была выяснена с помощью электронной микроскопии. Оказалось, что бактериофаг состоит из белковой оболочки, внутри которой находится ДНК. Эксперимент был спланирован таким образом, чтобы выяснить, что же — белок или ДНК — является носителем наследственной информации. Херши и Чейз выращивали две группы бактерий: одну в среде, содержащей радиоактивный фосфор-32 в составе фосфат-Иона, другую — в среде с радиоактивной серой-35 в составе сульфат-Иона. Бактериофаги, добавленные в среду с бактериями и размножавшиеся в них, поглощали эти радиоактивные изотопы, которые служили маркёрами, при построении своей ДНК и белков. Фосфор содержится в ДНК, но отсутствует в белках, а сера, наоборот, содержится в белках (точнее в двух аминокислотах: цистеин и метионин), но её нет в ДНК. Таким образом, одни бактериофаги содержали меченые серой белки, а другие — меченую фосфором ДНК. После выделения радиоактивно-меченых бактериофагов их добавляли к культуре свежих (не содержащих изотопов) бактерий и позволяли бактериофагам инфицировать эти бактерии. После этого среду с бактериями подвергали энергичному встряхиванию в специальном смесителе (было показано, что при этом оболочки фага отделяются от поверхности бактериальных клеток), а затем инфицированных бактерий отделяли от среды. Когда в первом опыте к бактериям добавлялись меченые фосфором-32 бактериофаги, оказалось, что радиоактивная метка находилась в бактериальных клетках. Когда же во втором опыте к бактериям добавлялись бактериофаги, меченые серой-35, то метка была обнаружена во фракции среды с белковыми оболочками, но её не было в бактериальных клетках. Это подтвердило, что материалом, которым инфицировались бактерии, является ДНК. Поскольку внутри инфицированных бактерий формируются полные вирусные частицы, содержащие белки вируса, данный опыт был признан одним из решающих доказательств того факта, что генетическая информация (информация о структуре белков) содержится в ДНК. В 1969 году Алфред Херши получил Нобелевскую премию за открытия генетической структуры вирусов. В 2002 году, в университете Нью-Йорка был создан первый синтетический вирус . Методы исследования вирусов. Исторически вирусология отпочковалась от микробиологии, и хотя микробиологическая техника не могла быть использована при работе с вирусами, такие общие принципы, как правила асептики, получение чистых линий, методы титрования и, наконец, вакцинации, легли в основу новой науки. Дальнейшее изучение наиболее важных свойств вирусов потребовало разработки ряда специальных методов. Так, способность вирусов проходить через бактериальные фильтры стала использоваться для определения их размеров и очистки , малые размеры вирусов стимулировали создание более совершенных методов микроскопии . Технический арсенал вирусологии постепенно обогащается методами физики, химии, генетики, цитологии, молекулярной биологии и иммунологии. Вирусы удалось измерить и взвесить, определить их химический состав, закономерности размножения, место в природе, роль в возникновении болезней, а также разработать эффективные методы борьбы с вирусными инфекциями. Вирусы выращивают специальными методами, путем заражения лабораторных животных, куриных эмбрионов и культура тканей. На заре вирусологии исследования проводились на лабораторных животных (белых мышах, морских свинках, кроликах). Им вводили «подозрительный материал» и по картине заболевания судили, какой вирус его вызывал. Для размножения и выделения вирусов, кроме лабораторных животных стали использовать развивающиеся куриные эмбрионы, в которых хорошо размножаются некоторые вирусы, накапливаясь, порой до значительных количеств. С начала 50-х годов XX века был разработан метод культуры тканей: клетки живой ткани разделяют с помощью ферментов, переносят в специальную стерильную посуду, добавляют сложную по составу питательную среду и ставят в термостат для роста. Клетки начинают делиться и постепенно покрывают поверхность стекла ровным сплошным слоем. Если такие клетки заразить вирусом, то можно непосредственно наблюдать их разрушительное действие. Метод культуры тканей позволил открыть новые вирусы и изучить взаимодействие вирусов и клеток. Выделение, размножение и определение видовой принадлежности вирусов являются основными методами практической вирусологии. Эта работа состоит обычно из двух основных частей: изучения клеток, зараженных вирусом, и исследования выделенных вирусов. Для обнаружения зараженных клеток используются различные приемы вирусологической диагностики: метод флюоресцирующих антител, позволяющих четко определять наличие вирусов в клетках, которые внешне выглядят незараженными; метод учета скорости и характера размножения вирусов, основанный на разрушении (полном или частичном) клеток. Важную роль в диагностике вирусных инфекций играет определение титров специфических антител в сыворотке больных с помощью различных иммунологических реакций – нейтрализации, связывания комплемента, задержки гемагглютинации и др. ΙΙ. Особенности строения и размножения вирусов Рисунок 2. Долгое время о существовании вирусов судили по их болезнетворному действию. Непосредственно увидеть вирусы удалось лишь после изобретения электронного микроскопа, дающего увеличение в десятки и сотни тысяч раз. Это произошло примерно через 50 лет после открытия вирусов. Самые крупные вирусы приближаются по размерам к небольшим бактериям, самые мелкие – к крупным белковым молекулам, например, к молекуле гемоглобина крови. Иными словами, среди вирусов есть свои великаны и карлики. Для измерения вирусов используют условную величину, называемую нанометром (нм). Один нанометр составляет миллионную долю миллиметра. Размеры разных вирусов варьируют от 20 до нескольких сотен нм. Для сравнения приведем величину самых мелких кровяных клеток – эритроцитов, равную 7000-8000 нм, т.е. вирусы меньше эритроцитов в десятки и сотни раз. По внешнему виду тельца вирусов напоминают кубики, палочки, шарики, многогранники и нити. Простые вирусы состоят из белков и нуклеиновой кислоты. Наиболее важная часть вирусной частицы – нуклеиновая кислота – является носителем генетической информации. Если клетки человека, животных, растений и бактерий всегда содержат два типа нуклеиновых кислот – дезоксирибонуклеиновую – ДНК и рибонуклеиновую – РНК, то у разных вирусов обнаружен, лишь один тип – или ДНК, или РНК, что положено в основу их классификации. Второй обязательный компонент вириона – белки отличаются у разных вирусов, что позволяет распознавать их с помощью иммунологических реакций. Более сложные по структуре вирусы, кроме белков и нуклеиновых кислот, содержат углеводы, липиды. Для каждой группы вирусов характерен свой набор белков, жиров, углеводов и нуклеиновых кислот. Некоторые вирусы содержат в своем составе ферменты. Каждый компонент вирионов имеет определенные функции: белковая оболочка защищает от неблагоприятных воздействий, нуклеиновая кислота отвечает за наследственные и инфекционные свойства и играет ведущую роль в изменчивости вирусов, а ферменты участвуют в их размножении. Обычно нуклеиновая кислота находится в центре вириона и окружена белковой оболочкой, как бы одета в нее. Капсид состоит из определенным образом уложенных однотипных белковых молекул, которые образуют симметричные геометрические формы вместе с нуклеиновой кислотой вирусов. В случае кубической симметрии нуклеокапсида нить нуклеиновой кислоты свернута в клубок, а капсомеры плотно уложены вокруг нее. Так устроены вирусы полиомиелита, ящура, аденовирусы, реовирусы, риновирусы и др. при спиральной (палочковидной) симметрии нуклеокапсида нить нуклеиновой кислоты вируса закручена в виде спирали, каждый ее виток покрыт капсомерами, тесно прилегающими друг к другу. Структуру капсомеров и внешний вид вирионов можно наблюдать с помощью электронной микроскопии. Рисунок 3. – Схема строения вируса иммунодефицита человека (1 – капсомеры; 2 – геном; 3 – липопротеиновая оболочка (суперкапсид); 4 - гликопротвиды) У сложно устроенных вирусов сердцевина в виде туго свернутой спирали покрыта одной или несколькими внешними оболочками, в состав которых входят различные вещества. Такое строение имеют, например, вирусы оспы, гриппа и парагриппа. Особенно подробно изучено строение вирусных бактерий – бактериофагов (фагов), которые состоят из головки и хвоста. Хвост фага одет белковым чехольчиком, от которого отходят длинные тонкие волокна, играющие роль присосок при прикреплении частицы фага к бактерии. Размножение вирусов. Вирусы относятся к абсолютным паразитам. Это означает, что они не могут существовать, не принося вреда. Основная сфера деятельности вирусов – клетки, которым любая встреча с вирусом не сулит ничего хорошего. Образно говоря, вирусы убивают тех, кто их кормит, но делают это, не сразу, а размножаясь. Рассмотрим простейший пример размножения вирусов. Представим себе некий обобщенный вариант вирусной частицы, состоящей из двух основных компонентов – нуклеиновой кислоты (РНК или ДНК), заключенной в белковый чехол (оболочку). Встреча вируса с клетками начинается с его адсорбции, т.е. прикрепления к клеточной стенке, плазматической мембране клетки. Причем каждый вирион способен прикрепляться лишь к определенным клеткам, имеющим специальные рецепторы. На одной клетке могут адсорбироваться десятки и даже сотни вирионов. Затем начинается внедрение или проникновение вируса в клетку, которое осуществляет она сама. Этот процесс называется виропексисом. Клетка как бы «втягивает» прикрепившиеся вирионы внутрь. Более просто устроенные бактерии не способны сами захватывать вирионы из окружающей среды. Этим, по-видимому, и можно объяснить наличие у поражающих их вирусов (бактериофагов) сложного и совершенного аппарата, подобно шприцу, впрыскивающего нуклеиновые кислоты. Следующий этап – «раздевание» проникших внутрь клеток вирионов. Для этой цели используется имеющийся в клетках комплекс специальных ферментов, которые растворяют белковый чехол вируса и освобождают его нуклеиновую кислоту. Последняя по клеточным каналам проникает в ядро клетки или остается в цитоплазме клетки. Она не только «руководит» размножением вируса, но и определяет его наследственные свойства. Нуклеиновая кислота вируса подавляет собственный обмен клетки и направляет его на производство новых компонентов вируса. С помощью полимераз снимаются копии родительской нуклеиновой кислоты . Часть вновь образовавшихся копий соединяется с рибосомами, на которых осуществляется синтез вирусных белков. После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства или, выражаясь научным языком, процесс композиции. Процесс этот происходит обычно вблизи клеточных оболочек, принимающих иногда в нем непосредственное участие. В составе вновь образовавшихся вирионов часто обнаруживаются вещества, характерные для клетки, в которой размножается вирус. В этих случаях формирование вирионов завершается своеобразным обволакиванием их слоем клеточной мембраны. Последним этапом взаимодействия вирусов с клетками является выход, или освобождение, новых дочерних вирионов из клетки. Для энтеровирусов характерен быстрый выход в окружающую среду сотен, а порой тысяч дочерних вирионов. Другие вирусы человека и животных (вирусы герпеса, реовирусы, ортомиксовирусы) выходят из клеток по мере созревания. До гибели клеток эти вирусы успевают проделать несколько циклов размножения, постепенно истощая синтетические ресурсы клеток. В отдельных случаях вирусы могут накапливаться внутри клеток, образуя кристаллоподобные скопления, которые называют тельцами включений. При гриппе, бешенстве, оспе такие тельца находят в цитоплазме клеток, при весенне-летнем энцефалите – в ядре, при некоторых инфекциях – и в ядре, и в цитоплазме. Высокая специфичность внутриклеточных включений при вирусных заболеваниях позволяет использовать этот признак для диагностики. Например, обнаруженные в клетках головного мозга цитоплазматические включения являются основным доказательством заболевания бешенством, а специфические образования круглой или овальной формы, обнаруженные в эпителиальных клетках, указывают на заболевание оспой. Включения описаны также при энцефалите, ящуре и других заболеваниях. Очень своеобразные включения, имеющие кристаллическую форму, образуют вирусы растений. Таким образом, размножение вирусов происходит особым, ни с чем не сравнимым способом. Сначала вирионы проникают внутрь клеток, и освобождаются вирусные нуклеиновые кислоты. Затем «заготавливаются» детали будущих вирионов. Размножение заканчивается сборкой новых вирионов и выходом их в окружающую среду. Выпадение любого из указанных этапов приводит к нарушению нормального цикла и влечет за собой либо полное подавление размножения вирусов, либо появление неполноценного потомства. Поразительно, как вирусы, которые в десятки и даже сотни раз меньше клеток, умело и уверенно распоряжаются клеточным хозяйством. Для построения себе подобных они используют клеточные материалы и энергию. Размножаясь, они истощают клеточные ресурсы и глубоко, часто необратимо, нарушают обмен веществ, что в конечном счете является причиной гибели клеток. ΙΙΙ . Многообразие вирусов и типы вирусных инфекций В основу классификации вирусов положены следующие признаки: тип нуклеиновой кислоты (ДНК- или РНК-содержащие вирусы), размер, строение, наличие или отсутствие липидов и др. Основные группы вирусов, вызывающих заболевания у человека, представлены в таблице. Таблица - Вирусы, опасные для человека
Как видно из приведенных данных, из более чем 1000 вирусов, выделенных от человека и животных к настоящему времени, около половины обладает болезнетворными свойствами. При этом вирусы действуют избирательно, обычно поражая определенные органы и ткани кишечника, миндалины, печень, нервные клетки спинного или головного мозга, поэтому болезни, которые они вызывают (энтериты, острые респираторные заболевания, гепатиты, энцефалиты и др.), как правило, имеют определенную клиническую картину. Для большей полноты упомянем некоторые вирусы, вызывающие болезни животных, имеющие важное значение для ветеринарии. По строению и основным свойствам эти вирусы очень напоминают приведенные в таблице вирусы человека, хотя они паразитируют в клетках домашних и диких животных, птиц, рыб и насекомых. Среди них различают большую группу вирусов оспы обезьян, коров, верблюдов, буйволов, коз, кроликов, мышей, различных птиц и насекомых; аденовирусы быков, лошадей, свиней, овец, собак, кур, гусей, уток; герпесвирусы обезьян, аборта лошадей, свиней, крыс и кур; реовирусы обезьян, летучих мышей, овец, птиц; тогавирусы, вызывающие энцефаломиелиты лошадей, чуму свиней, геморрагическую лихорадку обезьян; коронавирусы, вызывающие бронхит кур, гепатит Машей, энцефалит свиней и др.; парамиксовирусы коров, овец, индюков, зябликов, попугаев, пневмонии овец, чумы собак и др.; ретровирусы, вызывающие лейкозы крупного рогатого скота, саркомы кошек и птиц, рак молочных желез мышей и др.; пикорнавирусы, вызывающие полиомиелит и энцефаломиокардит у мышей, ящур и т.д. Диапазон патологических процессов, вызываемых вирусами, очень широк (таблица). Здесь и так называемые генерализованные инфекции (грипп, корь, бешенство, свинка, оспа и др.), и местные поражения кожи и слизистых оболочек (герпес, бородавки), и болезни отдельных органов и тканей (миокардиты, гепатиты, лейкозы), и, наконец, злокачественных новообразования (рак, саркома у животных). Использование антибиотиков резко снизило число заболеваний, вызываемых бактериями и простейшими. Это привело к тому, что удельный вес вирусных инфекций в патологии человека начал возрастать. Распространенными заболеваниями остаются грипп и острые респираторные заболевания, корь, вирусный гепатит, тропические лихорадки, герпес и другие вирусные болезни. В природе существует мало чисто человеческих вирусов; все они близки и аналогичны соответствующим вирусам животных. Рисунок 4 – Вирус гепатита В Какова вероятность встречи с вирусами? С возбудителями гриппа, кори, свинки (см. Паротит эпидемический), герпеса, цитомегалии, гастроэнтерита и различных ОРЗ (см. Острые респираторные заболевания) контакты практически неизбежны (90-100%); с вирусами, вызывающими гепатит (см. Гепатит вирусный), краснуху, бешенство, везикулярный стоматит, полиомиелит, миокардиты, синдром приобретенного иммунного дефицита (СПИД), встреч можно избежать. Так или иначе, но человек на протяжении всей жизни подвергается опасности заразиться и заболеть какой-либо вирусной инфекцией, хотя существует определенная возрастная чувствительность к вирусам. Еще не родившемуся плоду человека грозят два вируса – краснухи и цитомегалии, которые передаются внутриутробно и очень опасны. Новорожденные и грудные младенцы еще более уязвимы: им угрожают вирусы герпеса 1-го и 2-го типа и вирус гепатита В, подстерегают их и новые опасности – грипп, различные ОРЗ, полиомиелит, острые гастроэнтериты. Однако особо высокой чувствительностью отличаются дети младшего и старшего возраста. Они восприимчивы, по сути дела, ко всем вирусным инфекциям, и в первую очередь, к кори, эпидемическому паротиту и гепатиту А. Перед людьми зрелого возраста вирусы несколько отступают «отступают» - взрослых людей они поражают гораздо реже, но в отношении пожилых и стариков активизируются вновь. Итак, вирусы являются постоянными спутниками человека от рождения (вернее, еще до рождения) вплоть до глубокой старости. Считается, что при средней продолжительности жизни 70 лет около 7 лет человек более вирусными заболеваниями. Отсюда понятно, что вирусы приносят огромный экономический ущерб. Так, ежегодные потери, связанные только с гриппом, составляют в нашей стране миллиарды рублей. Если же сюда прибавить потери, связанные с другими вирусными инфекциями, в частности поражающими сельскохозяйственных животных (ящур, чума кур, лейкозы коров и др.) и растения (рак картофеля, карликовость помидоров, мозаика табака и т.д.), эта сумма возрастает во много раз. Но вернемся к людям. Подсчитано, что в среднем человек ежегодно сталкивается с 2 и более вирусными инфекциями, а всего за жизнь вирусы до 200 раз проникают в его организм. К счастью, далеко не все эти встречи заканчиваются болезнями, так как в процессе эволюции человеческий организм научился успешно справляться со многими вирусами. Взаимодействие вирусов с клетками . Формы вирусной инфекции сложны и многообразны. В одних случаях быстро развивается болезнь, которая закономерно заканчивается гибелью клеток, в других – вирус, проникший внутрь клетки, как бы исчезает и может длительное время не проявлять своего вредоносного действия. Первый тип взаимодействия называется литической, явной, или острой инфекцией, второй – латентной, или маскированной. В первом случае заболевание протекает быстро, во втором – наблюдается длительное хроническое течение болезни, клетки сохраняют внешне здоровый вид, и поэтому такое заболевание трудно распознать. Между этими двумя крайними видами вирусных заболеваний существует множество переходных форм. При острой вирусной инфекции вскоре после контакта с вирусом начинается разрушение клеток, они сморщиваются и округляются. Постепенно не остается ни одной живой клетки, обнаруживаются лишь бесформенные остатки погибших клеток. Этот процесс напоминает острую инфекционную болезнь со смертельным исходом. Такую картину могут вызвать вирусы оспы, полиомиелита, ящура и др. При латентной инфекции вирусы могут оставаться в клетке неопределенно долгое время, не оказывая характерного болезнетворного действия. Больше того, они могут передаваться потомству этой клетки, переходить из поколения в поколение. Доказано, что латентные вирусные инфекции встречаются в природе чаще острых. Практически все известные вирусы могут выступать как в острой, так и в маскированной форме. Латентные вирусные инфекции наблюдаются при таких заболеваниях, как герпес, полиомиелит, энцефаломиелит, гепатиты и, возможно, опухоли. Вирусы, вызывающие эти заболевания, могут долго (иногда всю жизнь) оставаться в организме, не обнаруживая своего присутствия. Один из предполагаемых механизмов столь длительного сохранения – интеграция генетического материала вирусов и клеток, что доказано для ряда РНК - и ДНК-содержащих вирусов. Для таких случаев советский вирусолог Л.А. Зильбер предложил термин «интегративные болезни». При ослаблении организма в результате неблагоприятных воздействий (охлаждения, длительного воздействия солнечных лучей, рентгеновских лучей, стрессов) вирусы могут активизироваться и проявлять свое болезнетворное действие. Под влиянием перечисленных провоцирующих факторов скрытая бессимптомная вирусная инфекция переходит в явное заболевание. Естественно, реакция организма на внедрение вируса зависит от многих причин. Здесь и количество заражающего вируса, и пути его проникновения (так называемые ворота инфекции), и состояние защитных сил организма, и многое другие. В зависимости от этого результат встречи с вирусом может быть различным. Из числа наиболее типичных вирусов, вызывающих латентные инфекции, следует назвать, прежде всего, представителей семейства вирусов герпеса. Так, вирус герпеса 1-го типа вызывает местные поражения кожи, слизистых оболочек и глаз, а вирус герпеса 2-го тапа поражает половые органы. Эти заболевания носят упорный, рецидивирующий характер и могут многократно повторяться после более или менее длительных перерывов. К этой же группе относятся вирусы, вызывающие опоясывающий лишай, инфекционный мононуклеоз и цитомегалию. Предполагается, что эти вирусы, особенно последний, повреждают иммунную систему организма, ослабляя тем самым его защиту от других инфекций. Из других вирусов, склонных к длительному бессимптомному пребыванию в организме, упомянем вирус гепатита В. При этом заболевании часто наблюдается так называемое здоровое вирусоносительство, опасное не столько для самого носителя, сколько для окружающих. К сожалению, таких «владельцев» у вируса гепатита очень много. По предварительным подсчетам, число их на нашей планете достигает 200 миллионов. Они-то и поддерживают постоянно высокий уровень этого тяжелого заболевания. Медленные вирусные инфекции. Возбудители медленных вирусных инфекций – так называемые медленные вирусы, вызывают поражение головного мозга. Подострый склерозирующий панэнцефалит, прогрессирующий краснушный панэнцефалит «на совести» уже известных нам вирусов кори и краснухи. Эти болезни встречаются нечасто, но, как правило, протекают очень тяжело и заканчиваются смертельно. Еще реже наблюдается прогрессирующая многофокусная лейкоэнцефалопатия, которую вызывают два вируса – полиомы и вакуолизирующий вирус обезьян SV 40. Третий представитель этой группы – вирус папилломы – является причиной возникновения обычных бородавок. Сокращенные наименования вирусов папилломы, полиомы и вакуолизирующего вируса SV 40 составили название всей группы вирусов – паповавирусы. Рисунок 5 – Вирус кори Из других медленных вирусных инфекций упомянем болезнь Крейтцфельдта-Якоба. У больных наблюдаются снижение интеллекта, развитие парезов и параличей, а затем кома и смерть. К счастью, число таких больных невелико, приблизительно один на миллион. Близкая по клинической картине болезнь, называемая Куру, обнаружена на Новой Гвинее у сравнительно немногочисленной народности форе. Болезнь была связана с ритуальным каннибализмом – поеданием мозгов родственников, умерших от Куру. Наибольшей опасности заразиться были подвержены женщины и дети, которые принимали самое непосредственное участие в извлечении, приготовлении и поедании заразных мозгов. Вирусы, по-видимому, проникали через порезы и расчесы кожи. Запрещение каннибализма, которого добился один из пионеров изучения Куру американский вирусолог Карлтон Гайдушек, привело практически к прекращению этого смертельного заболевания. Вирусы и рак. Из всех известных способов сосуществования вирусов и клеток наиболее загадочен вариант, при котором генетический материал вируса объединяется с генетическим материалом клетки. В результате вирус становится как бы нормальным компонентом клетки, передаваясь при делении из поколения в поколение. Первоначально процесс интеграции был детально изучен на модели бактериофагов. Давно известны бактерии, способные образовывать бактериофаги без заражения, как бы самопроизвольно. Свойство производить бактериофаг они передают по наследству своему потомству. Бактериофаг, полученный из этих так называемых лизогенных бактерий, называют умеренным, если им заразить чувствительные бактерии, то размножения бактериофага и гибели микроорганизмов не происходит. Бактериофаг в этих бактериях переходит в неинфекционную форму. Бактерии продолжают хорошо расти на питательных средах, имеют обычную морфологию и отличаются от незараженных только тем, что приобретают устойчивость к повторному заражению. Они передают бактериофаг по наследству своему потомству, в котором разрушается и погибает только ничтожно малая часть (1 из 10 тыс.) дочерних клеток. Создается впечатление, что в этом случае в борьбе с бактериофагом победила бактерия. На самом деле это не так. Когда лизогенные бактерии попадают в неблагоприятные условия, подвергаются облучению ультрафиолетовыми и рентгеновскими лучами, воздействию сильных окислителей и т.п., «замаскированный» вирус активизируется и переходит в полноценную форму. Большинство клеток при этом распадается и начинает образовывать вирусы, как при обычной острой инфекции. Это явление называется индукцией, а факторы, ее вызывающие, - индуцирующими. Явление лизогении исследовали в различных лабораториях мира. Был накоплен большой экспериментальный материал, показывающий, что умеренные бактериофаги существуют внутри бактерии в виде так называемых профагов, представляющих собой объединение (интеграцию) бактериофагов с хромосомами бактерий. Профаг синхронно размножается вместе с клеткой и представляет с ней как бы единое целое. Являясь своеобразной субъединицей клетки, профаги в то же время выполняют свою собственную функцию – они несут генетическую информацию, необходимую для синтеза полноценных частиц данного типа фага. Это свойство профага реализуется, как только бактерии попадают в неблагоприятные условия, индуцирующие факторы нарушают связи между хромосомой бактерии и профагом, активизируя его. Лизогения широко распространена в природе. У некоторых бактерий (например, у стафилококков, бактерий брюшного тифа) почти каждый представитель является лизогенным. Известно около 40 вирусов, вызывающих лейкозы , рак и саркому у холоднокровных (лягушки), пресмыкающихся (змеи), птиц (куры) и млекопитающих (мыши, крысы, хомяки, обезьяны). При введении таких вирусов здоровым животным наблюдается развитие злокачественного процесса. Что касается человека, то здесь дело обстоит много сложнее. Основная трудность работы с вирусами – кандидатами на роль возбудителей рака и лейкоза человека – связана с тем, что подобрать подходящее лабораторное животное обычно не удается. Однако недавно был открыт вирус, вызывающий лейкоз у человека. Советский вирусолог Л.А. Зильбер в 1948-1949 гг. разработал вирусогенетическую теорию происхождения рака. Предполагается, что нуклеиновая кислота вируса объединяется с наследственным аппаратом (ДНК) клетки, как в описанном выше случае лизогении с бактериофагами. Такое внедрение не происходит без последствий: клетка приобретает ряд новых свойств, одно из которых – способность к ускоренному размножению. Так возникает очаг молодых быстроделящихся клеток; они приобретают способность к безудержному росту, в результате чего образуется опухоль. Онкогенные вирусы малоактивны и не способны разрушать клетку, но могут вызвать в ней наследственные изменения, причем опухолевые клетки как будто бы больше не нуждаются в вирусах. Действительно, в уже возникших опухолях вирусы часто не обнаруживаются. Это позволило предположить, что вирусы в развитии опухоли играют как бы роль спички и могут не принимать участия в возникшем пожаре. На самом же деле вирус постоянно присутствует в опухолевой клетке и поддерживает ее в перерожденном состоянии. Очень важные открытия, касающиеся механизма возникновения рака, сделаны недавно. Ранее было замечено, что после заражения клеток онкогенными вирусами наблюдаются необычные явления. Зараженные клетки, как правило, сохраняют нормальный вид, и никаких признаков болезни обнаружить не удается. При этом вирус в клетках словно исчезает. В составе онкогенных РНК-содержащих вирусов обнаружен специальный фермент – обратная транскриптаза, осуществляющая синтез ДНК на РНК. После возникновения ДНК-копий они объединяются с ДНК клеток и передаются их потомству. Эти так называемые провирусы можно обнаружить в составе ДНК клеток различных животных, зараженных онкогенными вирусами. Итак, в случае интеграции «секретная служба» вирусов маскируется и может долгое время ничем себя не проявлять. При более внимательном изучении оказывается, что эта маскировка неполная. Присутствие вируса можно обнаружить по появлению новых антигенов на поверхности клеток – они так и называются поверхностными антигенами. Если клетки содержат в своем составе онкогенные вирусы, они обычно приобретают способность к безудержному росту или трансформируются, а это, в свою очередь, является чуть ли не первым признаком злокачественного роста. Доказано, что трансформацию (переход клеток к злокачественному росту) вызывает специальный белок, который закодирован в геноме вируса. Беспорядочное деление приводит к образованию очагов или фокусов трансформации. Если это происходит в организме, возникает предрак. Появление на клеточных мембранах новых поверхностных опухолевых антигенов делает их «чужими» для организма, и они начинают распознаваться иммунной системой как мишень. Но почему же тогда развиваются опухоли? Здесь мы вступаем в область предположений и догадок. Известно, что опухоли чаще возникают у пожилых людей, когда иммунная система становится менее активной. Возможно, скорость деления трансформированных клеток, которая носит безудержный характер, обгоняет иммунный ответ. Возможно, наконец, и этому есть много доказательств, онкогенные вирусы подавляют иммунную систему или, как принято говорить, оказывают иммуносупрессорное действие. В некоторых случаях иммуносупрессию вызывают сопутствующие вирусные заболевания или даже лекарства, которые дают больным, например, при пересадке органа или ткани, чтобы подавить грозную реакцию их отторжения. Полезные вирусы. Существуют и полезные вирусы. Сначала были выделены и испытаны вирусы – пожиратели бактерий. Быстро и безжалостно расправлялись они со своими ближайшими родственниками по микромиру: палочки чумы, брюшного тифа, дизентерии, вибрионы холеры буквально таяли на глазах после встречи с этими безобидными на вид вирусами. Естественно, их стали широко применять для предупреждения и лечения многих инфекционных болезней, вызываемых бактериями (дизентерия, холера, брюшной тиф). Однако за первыми успехами последовали неудачи. Это было связано с тем, что в организме человека бактериофаги действовали на бактерии не так активно, как в пробирке. Кроме того, бактерии очень быстро приспосабливались к бактериофагам и становились нечувствительными к их действию. После открытия антибиотиков бактериофаги как лекарство отступили на задний план. Но до сих пор их с успехом используют для распознавания бактерий, т.к. бактериофаги умеют очень точно находить «свои бактерии» и быстро растворять их. Это очень точный метод, который позволяет определять не только виды бактерий, но и их разновидности. Полезными оказались вирусы, поражающие позвоночных животных и насекомых. В 50-х годах XX века в Австралии остро встала проблема борьбы с дикими кроликами, которые быстрее саранчи уничтожали посевы сельскохозяйственных культур и приносили огромный экономический ущерб. Для борьбы с ними использовали вирус миксоматоза. В течение 10-12 дней этот вирус способен уничтожить практически всех зараженных животных. Для его распространения среди кроликов использовали зараженных комаров, которые сыграли роль «летающих игл». Можно привести и другие примеры успешного использования вирусов для уничтожения вредителей. Все знают, какой ущерб приносят гусеницы и жуки-пилильщики. Они поедают листья полезных растений, угрожая порой садам и лесным массивам. С ними сражаются так называемый вирус полиэдроза и гранулеза. На небольших участках их распыляют пульверизаторами, а для обработки больших площадей используют самолеты. Так поступили в Калифорнии при борьбе с гусеницами, которые поражали поля люцерны, а в Канаде для уничтожения соснового пилильщика. Перспективно также применение вирусов для борьбы с гусеницами, поражающими капусту и свеклу, а также для уничтожения домашней моли. Реакция организма на проникновение вируса. Взаимоотношения между вирусами и клетками зависят от многих условий и определяются, прежде всего, свойствами вирусов и чувствительностью клеток. Например, если клетки не содержат соответствующих рецепторов, вирус не может к ним прикрепиться, а следовательно, проникнуть внутрь и начать свое разрушительное действие. Даже при наличии рецепторов клетки могут оказаться нечувствительными к вирусу, и инфекционный процесс в них не разовьется. Наконец, если клетки чувствительны к вирусу, это еще не означает, что он обязательно убьет их. В природе, пожалуй, нет вирусов, способных заражать и убивать все клетки. Часто исход взаимодействия вируса и клеток зависит от количества проникшего вируса, или так называемой множественности заражения. В организме действие вируса вызывает активное противодействие, выражающееся в образовании интерферона и включении системы иммунитета. Вирусные белки, будучи чужеродными, организму, играют роль антигенов, вызывая в ответ образование антител. Основная функция антител – находить и обезвреживать антигены. В этой работе им помогают многочисленные иммунные клетки, которые захватывают и переваривают вирусные частицы. Организм не только расправляется с проникшим в него вирусом, но и готовится к будущим встречам с ним. Давно замечено, что, раз переболев, человек редко вновь заболевает той же вирусной болезнью. Но если это все же происходит, заболевание протекает быстрее и легче. Для защиты от вирусов человек совсем не обязательно должен встречаться с ними. Как известно, грудные дети редко болеют вирусными инфекциями. Природа позаботилась, чтобы младенцы постоянно иммунитет пассивно с кровью матери в период беременности и с молоком после родов. Материнское молоко защищает кишечник ребенка, то есть главные ворота инфекции. Параллельно ребенка вакцинируют против основных вирусных заболеваний. Немаловажную роль в защите от вирусов играет воспалительная реакция, направленная на ограничение распространения вирусов. При этом, помимо всем известных макрофагов, поглощающих вирусы, противовирусным эффектом обладают повышение температуры и увеличение кислотности среды. Так специфические (иммунитет) и неспецифические (интерферон, воспалительная реакция и др.) стражи неусыпно охраняют здоровье. Если проанализировать все, что мы теперь знаем о вирусах, то можно прийти к парадоксальным заключениям. С одной стороны, вирусы могут преодолеть все барьеры и вызвать заболевание; с другой – организм способен успешно бороться с этими микроскопическими паразитами и, как правило, одерживает над ними верх. Эти два крайних варианта можно рассматривать как единоборство, в котором побеждает одна из сторон. А между ними располагается множество других исходов. Например, (возможно, это самый распространенный вариант), когда враги длительно сосуществуют, не нанося друг другу никаких видимых повреждений. Такое «мирное сосуществование» может продолжаться месяцы, годы и даже десятилетия. Как это ни странно, оно взаимовыгодно. С точки зрения вируса – он нашел себе хозяина, который его кормит; с точки зрения организма – он не болеет и платит за это сравнительно невысокую дань. Тем не менее, установившееся равновесие в принципе непрочно, оно существует до поры до времени или, перефразируя известное выражение, - до худших времен. Механизмы такого равновесия многообразны и до конца не изучены. В одних случаях большинство клеток организма может быть нечувствительно к вирусу, но большая часть изменившихся клеток-мутантов все же позволяет ему незначительно размножаться и таким образом существовать. В других мутантным (генетически измененным) является уже вирус. В процессе его размножения образуются неполноценные вирионы – частицы, в которых частично или полностью отсутствует генетический материал (РНК или ДНК). Такие вирионы определяются как дефектные интерферирующие. Это означает, что, будучи сами по себе неполноценными, они нарушают образование нормальных вирионов. Далее следует упомянуть встречающиеся в природе температурно-чувствительные мутанты вирусов, способные размножаться лишь при определенных температурах. Поэтому повышение температуры, столь характерное для вирусных заболеваний, убивает эти вирусы, а нормализация температуры поддерживает размножение выживших вирионов до количества, вызывающего новое повышение температуры. В этом случае устанавливается волнообразный процесс динамического равновесия. Вернемся снова к организму. Существует широкая индивидуальная вариабельность в способности организма образовывать интерферон, антитела и другие защитные факторы. Уровень защитных факторов организма может повышаться и снижаться в зависимости от множества условий (стрессы, питание, погода, возраст). Естественно, вирусы, периодически проникающие в организм, могут попасть соответственно на благоприятную или неблагоприятную для себя почву и в первом случае вызвать болезнь, а во втором – затаиться, - размножение вирусов идет вяло, присутствие их ничем не проявляется, хотя полного уничтожения тоже не происходит. Для простоты изложения мы условно разделили возможные варианты сосуществования вирусов и клеток. На самом же деле в организме описанные варианты могут сочетаться, что намного усложняет анализ латентных и бессимптомных вирусных инфекций, которые, как уже говорилось, встречаются гораздо чаще, чем острые вирусные заболевания. В заключение вспомним еще об одном механизме взаимодействия вирусов и клеток. Попадая под «иммунный пресс», вирусам не остается ничего лучшего, как несколько видоизмениться и таким образом избежать нейтрализующего действия антител и других иммунных механизмов, что дает возможность им выжить. В этом отношении характерна изменчивость вирусу гриппа. Это явление хорошо объясняется дарвиновскими законами о борьбе за существование и выживании наиболее приспособленных. ΙV . Профилактика вирусных заболеваний Существуют три основных способа борьбы с вирусными заболеваниями – вакцинация, применение интерферона и химиотерапия. Каждый из них действует по-своему: вакцины включают систему иммунитета, интерферон подавляет размножение вирусов, проникших внутрь клеток, а химиопрепараты вступают с вирусами в единоборство и приостанавливают начавшееся заболевание. Исторически самым старым и надежным является метод вакцинации. Он известен уже около 200 лет и до сих пор верно служит человечеству. Первые попытки борьбы с вирусными заболеваниями были предприняты задолго до открытия вирусов. Суть их сводится к простой формуле «Бей врага его же оружием!». Вирус здесь выступает против вируса. Английский врач Э. Дженнер заметил, что молочницы, перенесшие оспу коров (заболевание очень легкое), позже не болеют натуральной оспой. В 1796 г. он попробовал привить оспу коров (вакцину) здоровым людям, после этой процедуры они не заболели оспой. Тогда от оспы умирали ежегодно миллионы людей, и открытие Дженнера было чрезвычайно важным. С тех пор прошло много лет. Вторая противовирусная вакцина (так стали называть препараты, защищающие организм от вирусных и бактериальных инфекций) была создана против бешенства французским ученым Л. Пастером в 1885 г. После открытия вирусов вакцины из убитых или ослабленных вирусов стали производить в промышленном масштабе. При введении в организм такие вирусы не вызывают заболевания, но создают активный иммунитет (или невосприимчивость) в данному вирусу. Этот метод называется вакцинопрофилактикой. Приготовление вакцин – дело сложное и многоэтапное, в нем участвуют врачи, биологи, биохимики, инженеры и другие специалисты. Ко всем вакцинам предъявляются два основных требования – они должны быть эффективны и безвредны. С помощью вакцин окончательно побеждена оспа, что является выдающейся победой медицинской науки XX века, сведены почти на нет полиомиелит и бешенство, резко снижена заболеваемость корью, краснухой, свинкой, желтой лихорадкой, энцефалитами и другими вирусными инфекциями. Благодаря вакцинации спасены миллионы жизней, ее роль в борьбе с инфекционными болезнями трудно переоценить. Другим способом защиты человека от вирусов, имеющим близке отношение к вакцинации, является использование сывороток и гамма-глобулинов, полученных из крови людей, переболевших той или иной вирусной болезнью, или из крови животных, привитых (иммунизированных) определенными вирусами. Такие сыворотки содержат антитела – специфические белки, способные нейтрализовать соответствующие вирусы и создавать таким образом пассивный иммунитет уже через несколько часов после их введения. Этот способ используется для предупреждения кори, лечения энцефалитов и других вирусных заболеваний. К сожалению, далеко не при всех вирусных болезнях массовая вакцинация служит надежным барьером. Высокая избирательность или специфичность действия вакцин оборачивается их недостатком. В случаях, когда одно и то же заболевание, например, грипп и острые респираторные заболевания, вызываются многими вирусами (их около 150), вакцинация практически невозможна. Так, даже лучшие образцы противогриппозных вакцин могут обеспечить лишь снижение заболеваемости гриппом, но не его ликвидацию. При этом сами вирусы гриппа быстро изменяются, и созданные ранее образцы вакцин становятся неэффективными. Более того, даже если приготовить вакцины против всех болезнетворных вирусов (а их более 500), что теоретически возможно, то охватить прививками всех людей нереально. Поэтому появилась потребность в разработке новых подходов к борьбе с вирусами. Так возникла химиотерапия вирусных инфекций. В отличие от вакцинации, ее конечной целью является не предупреждение, а лечение. Как известно, ни один из широко распространенных сульфаниламидных препаратов или антибиотиков не подавляет размножение вирусов. Основная трудность, с которой сталкиваются при разработке химиотерапии вирусных инфекций, заключается в том, что вирусы размножаются внутри клеток, используя их систему, в силу чего любое воздействие на синтез вирусов приводит к нарушению обмена веществ клеток. В связи с этим большинство препаратов, подавляющих размножение вирусов, параллельно угнетают жизнедеятельность клетки-хозяина. Поэтому широко известные антибиотики и антиметаболиты, обладающие выраженной способностью подавлять развитие вирусов в пробирке, малоэффективны в условиях организма. Клинически пригодные антивирусные препараты удалось получить сравнительно недавно. Это прежде всего ремантадин, защищающий от гриппа или облегчающий его течение, если начать лечение в самом начале заболевания. Из других препаратов следует назвать 5-йодуридин, 5-бромуридин и 6-азауридин, а также вещества, стимулирующие образование в организме интерферона, - полудан и мегасин. Проходят испытания препараты, оказывающие защитное действие при вирусных энцефалитах. Первые успехи химиотерапии указывают на перспективность этого способа борьбы с вирусами. В отличие от вакцин и химиопрепаратов, интерферон обладает универсально широким спектром действия и активен практически против всех вирусов, он действует по принципу стоп-сигнала и подавляет размножение вирусов, уже проникших внутрь клеток. Ряд фактов показывает, что, если интерферон вырабатывается организмом плохо, вирусные заболевания протекают тяжелее. Клинические испытания интерферона показали, что он активен при острых респираторных заболеваниях, особенно вызываемых риновирусами, то есть как раз в тех случаях, когда вакцинация мало перспективна. Применение интерферона оказалось эффективным и при герпетических поражениях кожи, глаз и слизистых оболочек. Изучение химиопрепаратов и интерферона имеет недолгую историю и еще далеко от завершения, однако современные темпы научного прогресса позволяют надеяться, что в недалеком будущем медицина будет располагать высокоэффективными средствами для борьбы со многими вирусными заболеваниями. Заключение В результате проведенной работы, я изучила историю открытия, виды, строение, размножение вирусов, вирусные заболевания. На основе моего изучения можно сделать вывод, что вирусы весьма разнообразны и многие из них остаются нераспознанными. Для того чтобы знать лечение и причины возникновения различных заболеваний, мы должны тщательно изучать все особенности вирусов и вирусных инфекций. Литература: 1) «Микробиологический справочник» Д.Х. Йоргенсен Издательство: «Мир» Москва 2006год. стр.210 2) «Клиническая микробиология» П.Р.Марри; И.Р.Шей Издательство: «Мир» Москва 2006 год. стр.204 3) «Лабораторная диагностика и профилактика вирусных инфекций» Е.В.Гарасько Издательство: ИвГМА 2001 год. стр.3 4) «Диагностика инфекций» Г.А.Дмитриев Издательство: «Бином» 2007 год. стр.25 5)http://www.krugosvet.ru/ Приложения: Рисунок 1.- http://nplit.ru/books/item/f00/s00/z0000054/st017.shtml Рисунок 2.- «Лабораторная диагностика и профилактика вирусных инфекций» Е.В.Гарасько Рисунок 3.- «Диагностика инфекций» Г.А.Дмитриев Рисунок 4.- «Диагностика инфекций» Г.А.Дмитриев Рисунок 5.- «Микробиологический справочник» Д.Х. Йоргенсен |