Реферат: Математическая статистика
Название: Математическая статистика Раздел: Рефераты по математике Тип: реферат | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1-я контрольная работа Задача № 1.33 Вычислить центральный момент третьего порядка (m3 ) по данным таблицы:
Ответ: m3 =0,1246 Задача № 2.45 Во время контрольного взвешивания пачек чая установлено, средний вес у n =200 пачек чая равен =26 гр. А S= 1гр. В предложение о нормальном распределение определить у какого количества пачек чая ве будет находится в пределах от ( до . Р(25<x<27)=P=2Ф(1)-1=0,3634 m=n*p=200*0,3634 » 73 Ответ: n=73 Задача № 3.17 На контрольных испытаниях n=17 было определено =3000 ч . Считая, что срок службы ламп распределен нормально с =21 ч.., определить ширину доверительного интервала для генеральной средней с надежностью =0,98 Ответ: [2988<<3012] Задача № 3.69 По данным контрольных испытания n =9 ламп были получены оценки =360 и S= 26 ч. Считая, что сроки служб ламп распределены нормально определить нижнюю границу доверительного интервала для генеральной средней с надежностью Ответ:358 Задача № 3.71 По результатам n=7 измерений средняя высота сальниковой камеры равна =40 мм, а S=1,8 мм. В предложение о нормальном распределение определить вероятность того, что генеральная средняя будет внутри интервала . Ответ: P=0,516 Задача № 3.120
Ответ:50,2 Задача № 3.144 На основание выборочных наблюдений за производительностью труда n =37 рабочих было вычислено =400 метров ткани в час S= 12 м / ч. в предложение о нормальном распределение найти вероятность того, что средне квадратическое отклонение будет находится в интервале от 11 до 13. Ответ: P(11<s<13)=0,8836 Задача № 4.6 С помощью критерия Пирсона на уровне значимости a=0,02 проверить гипотезу о биноминальном законе распределения на основание следующих данных.
c2 факт. =S(mi - mi T )/ mi T =27,17 c2 табл. = (n=2, a=0,02)=7,824 c2 факт > c2 табл Ответ: Выдвинутая гипотеза о нормальном законе распределения отвергается с вероятностью ошибки альфа. 2-я контрольная работа Задача 4.29 По результатам n =4 измерений в печи найдено = 254 ° C . Предполагается, что ошибка измерения есть нормальная случайная величина с s = 6 ° C . На уровне значимости a = 0.05 проверить гипотезу H0 : m = 250 ° C против гипотезы H1 : m = 260 ° C . В ответе записать разность между абсолютными величинами табличного и фактического значений выборочной характеристики. m 1 > m 0 Þ выберем правостороннюю критическую область. Ответ: Т.к. используем правостороннюю критическую область, и tкр > tнабл , то на данном уровне значимости нулевая гипотеза не отвергается (|tкр | - |tнабл |=0,98). Задача 4.55 На основание n= 5 измерений найдено, что средняя высота сальниковой камеры равна мм, а S= 1,2 мм. В предположение о нормальном распределение вычислить на уровне значимости a =0,01 мощность критерия при гипотезе H0 :50 и H1 : 53 Ответ: 23 Задача 4.70 На основании n = 15 измерений найдено, что средняя высота сальниковой камеры равна = 70 мм и S = 3. Допустив, что ошибка изготовления есть нормальная случайная величина на уровне значимости a = 0.1 проверить гипотезу H0 : мм2 при конкурирующей гипотезе . В ответе записать разность между абсолютными величинами табличного и фактического значений выборочной характеристики. построим левостороннюю критическую область. Вывод: на данном уровне значимости нулевая гипотеза не отвергается (). Задача 4.84 По результатам n = 16 независимых измерений диаметра поршня одним прибором получено = 82.48 мм и S = 0.08 мм. Предположив, что ошибки измерения имеют нормальное распределение, на уровне значимости a = 0.1 вычислить мощность критерия гипотезы H0 : при конкурирующей гипотезе H1 : . построим левостороннюю критическую область. Ответ: 23; Задача 4.87 Из продукции двух автоматических линий взяты соответственно выборки n1 = 16 и n 2 = 12 деталей. По результатам выборочных наблюдений найдены = 180 мм и = 186 мм. Предварительным анализом установлено, что погрешности изготовления есть нормальные случайные величины с дисперсиями мм2 и мм2 . На уровне значимости a = 0.025 проверить гипотезу H 0 : m 1 = m 2 против H 1 : m 1 < m 2 . Т.к. H1 : m1 <m2 , будем использовать левостороннюю критическую область. Вывод: гипотеза отвергается при данном уровне значимости. Задача 4.96 Из двух партий деталей взяты выборки объемом n1 = 16 и n 2 = 18 деталей. По результатам выборочных наблюдений найдены = 260 мм, S1 = 6 мм, = 266 мм и S2 =7 мм. Предполагая, что погрешности изготовления есть нормальные случайные величины и , на уровне значимости a = 0.01 проверить гипотезу H 0 : m 1 = m 2 против H 1 : m 1 ¹ m 2 . Вывод : при данном уровне значимости гипотеза не отвергается. Задача 4.118 Из n1 = 200 задач первого типа, предложенных для решения, студенты решили m1 = 152, а из n2 = 250 задач второго типа студенты решили m2 = 170 задач. Проверить на уровне значимости a = 0.05 гипотезу о том, что вероятность решения задачи не зависит от того, к какому типу она относится, т.е. H0 : P1 = P2 . В ответе записать разность между абсолютными величинами табличного и фактического значений выборочной характеристики. Вывод: нулевая гипотеза при данном уровне значимости принимается (). Задача 1.39: Вычислить центральный момент третьего порядка (m3 * ) по данным таблицы:
Решение:
Ответ: m3 * =0 Задача 2.34: В результате анализа технологического процесса получен вариационный ряд:
Предполагая, что число дефектных изделий в партии распределено по закону Пуассона, определить вероятность появления 3 дефектных изделий. Решение:
Зпадача 3.28: В предложении о нормальной генеральной совокупности с s=5 сек., определить минимальный объем испытаний, которые нужно провести, чтобы с надежностью g=0.96 точность оценки генеральной средней m времени обработки зубчатого колеса будет равна d=2 сек. Решение: n=(5.1375)3 =26.39»27 Ответ: n=27
На основании измерения n=7 деталей вычислена выборочная средняя и S=8 мк. В предположении, что ошибка изготовления распределена нормально, определить с надежностью g=0.98 точность оценки генеральной средней. Решение:
Ответ: d=0.4278 Задача 3.82: На основании n=4 измерений температуры одним прибором определена S=9°С. Предположив, что погрешность измерения есть нормальная случайная величина определить с надежностью g=0.9 нижнюю границу доверительного интервала для дисперсии. Решение:
Задача 3.103: Из 400 клубней картофеля, поступившего на контроль вес 100 клубней превысили 50 г. Определить с надежностью g=0.98 верхнюю границу доверительного интервала для вероятности того, что вес клубня превысит 50 г. Решение:
Задача 3.142: По результатам 100 опытов установлено, что в среднем для сборки вентиля требуется Xср =30 сек., а S=7 сек. В предположении о нормальном распределении определить с надежностью g=0.98 верхнюю границу для оценки s генеральной совокупности. Решение:
Задача 4.18: Гипотезу о нормальном законе распределения проверить с помощью критерия Пирсона на уровне значимости a=0.05 по следующим данным:
Решение:
1.36. Вычислить дисперсию.
2.19. Используя результаты анализа и предполагая, что число дефектных изделий в партии распределено по закону Пуассона, определить теоретическое число партий с тремя дефектными изделиями.
m – число дефектных изделий в партии, fi – число партий, fi теор. = теоретическое число партий
Соответственно, теоретическое количество партий с тремя дефектными изделиями равно 1. 3.20. По выборке объемом 25 вычислена выборочная средняя диаметров поршневых колец. В предложении о нормальном распределении найти с надежностью γ=0,975 точность δ , с которой выборочная средняя оценивает математическое ожидание, зная, что среднее квадратическое отклонение поршневых колец равно 4 мм ..
По результатам семи измерений средняя высота сальниковой камеры равна 40 мм ., а S=1,8 мм.. В предположении о нормальном распределении определить вероятность того, что генеральная средняя будет внутри интервала (0,98х;1,02х). 3.74. По данным контрольных 8 испытаний определены х=1600 ч. и S=17ч..Считая, что срок службы ламп распределен нормально, определить вероятность того, что абсолютная величина ошибки определения среднего квадратического отклонения меньше 10% от S. 3.123. По результатам 70 измерений диаметра валиков было получено х=150 мм., S=6,1 мм.. Найти вероятность того, что генеральная средняя будет находиться внутри интервала (149;151). 3.126 По результатам 50 опытов установлено, что в среднем для сборки трансформатора требуется х=100 сек ., S=12 сек .. В предположении о нормальном распределении определить с надежностью 0,85 верхнюю границу для оценки неизвестного среднего квадратического отклонения. 4.10 С помощью критерия Пирсона на уровне значимости α=0,02 проверить гипотезу о законе распределения Пуассона (в ответе записать разность между табличными и фактическими значениями χ2 ).
|