Реферат: Синтез оптимальных уравнений
Название: Синтез оптимальных уравнений Раздел: Рефераты по математике Тип: реферат | ||||
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Механико-математический факультет Кафедра теоретической механики и робототехники Курсовая работаТема: Синтез оптимальных уравнений Студента 3-го курса 13 группы Павловского Сергея Александровича Научный руководитель Лютов Алексей Иванович Минск 2001г. ОГЛАВЛЕНИЕ Г л а в а I. Введение ................................................................................................ 2 § 1. Задача об оптимальном быстродействии.................................................... 2 1.Понятие об оптимальном быстродействии.................................................. 2 2.Задача управления........................................................................................ 3 3.Уравнения движения объекта....................................................................... 5 4.Допустимые управления............................................................................... 6 § 2. Об основных направлениях в теории оптимальных процессов.................. 7 5.Метод динамического программирования.................................................. 7 6.Принцип максимума..................................................................................... 9 § 3. Пример. Задача синтеза............................................................................... 12 7.Пример применения принципа максимума............................................... 12 8.Проблема синтеза оптимальных управлений............................................ 14 Г л а в а II. Линейные оптимальные быстродействия ..................................... 15 § 4 Линейная задача оптимального управления............................................... 15 9.Формулировка задачи................................................................................ 15 10.Принцип максимума................................................................................. 16 11.Принцип максимума — необходимое и достаточное условие оптимальности............................................................................................... 17 12.Основные теоремы о линейных оптимальных быстродействиях........... 18 § 5. Решение задачи синтеза для линейных задач второго порядка................ 18 13.Упрощение уравнений линейного управляемого объекта...................... 18 Г л а в а III. Синтез оптимальных управлений для уравнения второго порядка .......................................................................................................... 20 § 6. Решение задачи синтеза в случае комплексных собственных значений...... 20 14.Задача синтеза для малых колебаний маятника...................................... 20 Список используемой литературы....................................................................... 23 Г л а в а I ВВЕДЕНИЕ Управляемые объекты прочно вошли в нашу повседневную жизнь и стали обиходными, обыденными явлениями. Мы видим их буквально на каждом шагу: автомобиль, самолёт, всевозможные электроприборы, снабжённые регуляторами (например, электрохолодильник), и т. п. Общим во всех этих случаях является то, что мы можем «управлять» объектом, можем в той или иной степени влиять на его поведение. Обычно переход управляемого объекта из одного состояния в другое может быть осуществлён многими различными способами. Поэтому возникает вопрос о выборе такого пути, который с некоторой (но вполне определённой) точки зрения окажется наиболее выгодным. Это и есть (несколько расплывчато сформулированная) задача об оптимальном управлении. § 1. Задача об оптимальном быстродействии 1. Понятие об управляемых объектах. Рассмотрим прямолинейное движение автомобиля. В каждый момент времени состояние автомобиля можно характеризовать двумя числами: пройденным расстоянием s и скоростью движения v. Эти две величины меняются с течением времени, но не самопроизвольно, а сообразно воле водителя, который может по своему желанию управлять работой двигателя, увеличивая или уменьшая развиваемую этим двигателем силу F. Таким образом, мы имеем три связанных между собой параметра: s ,v ,F ,показанных на схеме (рис. 1). Величины s ,v ,характеризующие состояние автомобиля, называют его фазовыми координатами ,а величину F – управляющим параметром . Если мы будем рассматривать движение автомобиля по плоскости (а не по прямой), то фазовых координат будет четыре (две «географические» координаты и две компоненты скорости), а управляющих параметров – два (например, сила тяги двигателя и угол поворота руля). У летящего самолёта можно рассматривать шесть фазовых координат (три пространственные координаты и три компоненты скорости) и несколько управляющих параметров (тяга двигателя, величины, характеризующие положение рулей высоты и направления, элеронов). Разумеется, в проводимом ниже математическом исследовании мы будем иметь дело не с самими реальными объектами, а с некоторой математической моделью. Сказанное выше делает естественным следующее математическое описание управляемого объекта. Состояние объекта задаётся (в каждый момент времени) n числами x 1 , x 2 ,…, xn , которые называются фазовыми координатами объекта. Движение объекта заключается с математической точки зрения в том, что его состояние с течением времени изменяется, т. е. x 1 , x 2 ,…, xn являются переменными величинами (функциями времени). Движение объекта происходит не самопроизвольно. Им можно управлять; для этого объект снабжён «рулями», положение которых характеризуется (в каждый момент времени) r числами u 1 , u 2 ,…, ur ; эти числа называются управляющими параметрами . Рулями можно «манипулировать», т. е. по своему желанию менять (конечно, в допустимых пределах) управляющие параметры u 1 , u 2 ,…, ur . Иначе говоря, мы можем по желанию выбрать функции u 1 ( t), u 2 ( t),…, ur ( t), описывающие изменение управляющих параметров с течением времени. Мы будем предполагать (как это обычно и бывает), что, зная фазовое состояние объекта в начальный момент времени и выбрав управляющие функции u 1 ( t), u 2 ( t),…, ur ( t) (для t> t 0 ), мы можем точно и однозначно рассчитать поведение объекта для всех t> t0 ,т. е. можем найти функции x 1 ( t), x 2 ( t),…, xn ( t), характеризующие изменение фазовых координат с течением времени. Таким образом, изменение фазовых координат x 1 , x 2 ,…, xn уже не зависит непосредственно от нашего желания, но на движение объекта мы всё же можем в той или иной мере воздействовать, выбирая по своему желанию управляющие функции u 1 ( t), u 2 ( t),…, ur ( t) . Управляемый объект, о котором только что шла речь, в теории автоматического управления принято изображать так, как это показано на рис. 2. Величины u 1 , u 2 ,…, ur (управляющие параметры) часто называют также «входными переменными», а величины x 1 , x 2 ,…, xn (фазовые координаты) – «выходными переменными». Говорят ещё, что «на вход» объекта поданы величины u 1 , u 2 ,…, ur , а «на выходе» мы получаем величины x 1 , x 2 ,…, xn . Разумеется, на рис. 2 показано лишь условное обозначение управляемого объекта и никак не отражено его «внутреннее устройство», знание которого необходимо, чтобы выяснить, каким образом, зная управляющие функции u 1 ( t), u 2 ( t),…, ur ( t) , можно вычислить изменение фазовых координат x 1 ( t), x 2 ( t),…, xn ( t) . Величины u 1 , u 2 ,…, ur удобно считать координатами некоторого вектора u= (u 1 , u 2 ,…, ur ), также называемого управляющим параметром (векторным). Точно так же величины x 1 , x 2 ,…, xn удобно рассматривать как координаты некоторого вектора (или точки) x= (x 1 , x 2 ,…, xn ) в n – мерном пространстве с координатами x 1 , x 2 ,…, xn . Эту точку называют фазовым состоянием объекта, а n – мерное пространство, в котором в виде точек изображаются фазовые состояния, называется фазовым пространством рассматриваемого объекта. Если объект таков, что его фазовое состояние характеризуется только двумя фазовыми координатами x 1 , x 2 (см. рис. 1), то мы будем говорить о фазовой плоскости . В этом случае фазовые состояния объекта изображаются особенно наглядно. Итак, в векторных обозначениях рассматриваемый управляемый объект можно изобразить так, как показано на рис. 3. Входящая величина u= (u 1 , u 2 ,…, ur ) представляет собой управляющий параметр, а выходная величина x= (x 1 , x 2 ,…, xn ) представляет собой точку фазового пространства (или, иначе, фазовое состояние объекта). Как сказано выше, чтобы полностью задать движение объекта, надо задать его фазовое состояние x0 = (x 0 1 , x 0 2 ,…, x 0 n ) в начальный момент времени t0 и выбрать управляющие функции u 1 ( t), u 2 ( t),…, ur ( t) (для t >t 0 ), т. е. выбрать векторную функцию u( t)= u 1 ( t), u 2 ( t),…, ur ( t) ). Эту функцию u( t) мы будем называть управлением . Задание начального фазового состояния x0 и управления u( t) однозначно определяет дальнейшее движение объекта. Это движение заключается в том, что фазовая точка x (t)= (x 1 ( t), x 2 ( t),…, xn ( t) ), изображающая состояние объекта, с течением времени перемещается, описывая в фазовом пространстве некоторую линию, называемую фазовой траекторией рассматриваемого движение объекта (случай n= 2 изображён на рис. 4). Очевидно, что эта линия исходит из точки x 0 , поскольку x (t 0 )=x 0 . Пару векторных функций (u( t), x( t) ), т. е. управление u( t) и соответствующую фазовую траекторию x( t) , мы будем называть в дальнейшем процессом управления или просто процессом . Итак, резюмируем. Состояние управляемого объекта в каждый момент времени характеризуется фазовой точкой x= (x 1 , x 2 ,…, xn ). На движение объекта можно воздействовать при помощи управляющего параметра u= (u 1 , u 2 ,…, ur ). Изменение величин u, x с течением времени мы называем процессом ; процесс (u( t), x( t) ) составляется из управления u( t) и фазовой траектории x( t) . Процесс полностью определяется, если задано управление u( t) (при t >t 0 ) и начальное фазовое состояние x 0 = x( t 0 ) . 2. Задача управления. Часто встречается следующая задача, связанная с управляемыми объектами. В начальный момент времени t 0 объект находится в фазовом состоянии x 0 ; требуется выбрать такое управление u( t) , которое переведёт объект в заранее заданное конечное фазовое состояние x 1 (отличное от x 0 ; рис. 5). При этом нередко бывает, что начальное состояние x 0 заранее не известно. Рассмотрим один из наиболее типичных примеров. Объект должен устойчиво работать в некотором режиме (т. е. находиться в некотором фазовом состоянии x 1 ). В результате тех или иных причин (например, под воздействием неожиданного толчка) объект может выйти из рабочего состояния x 1 и оказаться в некотором другом состоянии x 0 . При этом точка x 0 , в которую может попасть объект, заранее не известна, и мы должны уметь так управлять объектом, чтобы из любой точки x 0 (или хотя бы из точек x 0 достаточно близких к x 1 ) вернуть его в рабочее состояние x 1 (рис. 6). Такое управление часто осуществляется человеком (оператором), который следит за приборами и старается выбирать управление, поддерживающее объект в требуемом рабочем режиме. Однако в современных условиях высокого развития техники оператор зачастую не может успешно справиться с этой задачей ввиду сложности поведения объекта, большой быстроты протекания процессов и т. п. Поэтому чрезвычайно важно создать такие приборы, которые сами, без участия человека, управляли бы работой объекта (например, в случае выхода объекта из рабочего состояния возвращали бы его в это рабочее состояние). Такие приборы («регуляторы», «автоматические управляющие устройства» и т. п.) сейчас очень распространены в технике, их изучением занимается теория автоматического управления. Первым устройством этого рода был центробежный регулятор Уатта, сконструированный для управления работой паровой машины (см. рис. 9). Схема этого регулятора показана на рис. 7. В общем случае (рис. 8) на вход регулятора подаются фазовые координаты объекта. Обычно требуется, чтобы переходный процесс (т. е. процесс перехода из начального фазового состояния x 0 в предписанное состояние x 1 , рис. 5) был в определённом смысле «наилучшим», например, чтобы время перехода было наименьшим или чтобы энергия, затраченная в течение переходного процесса, была минимальной и т. п. Такой «наилучший» переходный процесс называется оптимальным процессом . Термин «оптимальный процесс» требует уточнения, т. к. необходимо разъяснить, в каком смысле понимается оптимальность. Если речь идёт о наименьшем времени перехода, то такие процессы называются оптимальными в смысле быстродействия . Иначе говоря, процесс, в результате которого объект переходит из точки x 0 в точку x 1 (рис. 5), называется оптимальным в смысле быстродействия, если не существует процесса, переводящего объект из x 0 в x 1 за меньшее время (здесь и далее предполагается, что x 1 ≠x 0 ). Разумеется, желательно, чтобы регулятор не просто возвращал объект в рабочее состояние, а делал это наилучшим образом, например, в смысле быстродействия (т. е. возвращал объект в рабочее состояние за кратчайшее время). В связи с этим в теории автоматического управления рассматриваются весьма различные регуляторы. Рассмотрение регуляторов приводит к тому, что уменьшение времени переходного процесса связано с усложнением конструкции регулятора; поэтому, усложняя конструкцию регулятора, можно лишь приближаться к «идеальному», «оптимальному» регулятору, который во всех случаях осуществляет переходный процесс за кратчайшее время. В точности же «оптимального» регулятора, по-видимому, осуществить нельзя. Однако такой вывод является ошибочным, т. к. сейчас уже создали математический аппарат, рассчитывающий такие регуляторы. Можно предполагать, что оптимальные регуляторы будут играть важную роль в технике будущего. 3. Уравнения движения объекта. Начнём с рассмотрения одного простого примера. Пусть G – тело, которое может совершать прямолинейное движение (рис. 10). Массу этого тела будем предполагать постоянной и равной m , а его размерами будем пренебрегать (т. е. будем считать G материальной точкой.) Координату тела G (отсчитываемую от некоторой точки O той прямой, по которой оно движется) будем обозначать через x 1 . При движении тела G его координата x 1 меняется с течением времени. Производная представляет собой скорость движения тела G . Будем предполагать, что на тело G действуют две внешние силы: сила трения ─и упругая сила ─ kx 1 и что, кроме того, тело G снабжено двигателем. Развиваемую двигателем силу воздействия на тело G обозначим через u . Таким образом, по второму закону Ньютона движение телаG с течением времени будет описываться дифференциальным уравнением Обозначив скорость движения через x2 (т. е. положив ), мы сможем записать этот закон движения в виде следующей системы дифференциальных уравнений: (1.1) Здесь величины x 1 , x 2 являются фазовыми координатами тела G , а величина u – управляющим параметром, т. е. мы имеем объект, схематически изображённый на рис. 11. Уравнения (1.1) представляют собой закон изменения фазовых координат с течением времени (с учётом воздействия управляющего параметра), т. е. представляют собой закон движения фазовой точки в фазовой плоскости. Мы рассмотрели лишь один частный случай, но можно было бы указать целый ряд других примеров, в которых закон движения объекта описывается дифференциальными уравнениями. Чаще всего (см.(1.1)) эти уравнения дают выражения производных от фазовых координат через сами фазовые координаты и управляющие параметры, т. е. имеют вид (1.2) где f 1 , f 2 ,…, fn – некоторые функции, определяемые внутренним устройством объекта. В дальнейшем мы сосредоточим своё внимание именно на таких объектах (рис. 2), закон движения которых описывается системой дифференциальных уравнений вида (1.2). В векторной форме систему (1.2) можно записать в виде (1.3) где x ─ вектор с координатами x 1 ,…, xn , u – вектор с координатами u 1 ,…, ur и, наконец, f (x, u ) – вектор, координатами которого служат правые части системы (1.2). Разумеется, невозможно решить систему дифференциальных уравнений (1.2) (т. е. найти закон движения объекта), не зная каким образом будут меняться с течением времени управляющие параметры u 1 , u 2 ,…, ur . Напротив, зная поведение величин u 1 , u 2 ,…,ur , т. е. зная управляющие функции u 1 (t), u 2 (t),…, ur (t) для t >t 0 мы сможем из системы уравнений (1.4) или, что то же самое, из векторного уравнения (1.5) однозначно определить движение объекта (при t >t 0 ), если нам известно начальное фазовое состояние объекта (в момент t=t 0 ). Иначе говоря, задание управления u(t) и начального фазового состояния x 0 однозначно определяет фазовую траекторию x(t) при t >t 0 , что согласуется со сделанными ранее (стр. 1) предположениями о свойствах объекта. Тот факт, что задание начального фазового состояния (в момент t=t 0 ) позволяет из системы (1.4) однозначно определить фазовую траекторию x(t), t >t 0 , вытекает из теоремы о существовании и единственности решений системы дифференциальных уравнений. Предположим, что, зная начальное фазовое состояние x 0 и управление u(t)=(u 1 (t),…, ur (t)), мы определили фазовую траекторию x(t) (с помощью системы (1.4)). Если мы изменим управление u(t) (сохранив то же начальное состояние x 0 ), то получим некоторую другую траекторию, исходящую из той же точки x 0 ; вновь изменим управлениеu( t) – получим ещё одну траекторию и т. д. Таким образом, рассматривая различные управления u( t) , мы получим много траекторий, исходящих из точки x 0 (рис. 12). (Разумеется, это не противоречит теореме единственности в теории дифференциальных уравнений, так как, заменяя функции u 1 ( t),…, ur ( t) другими функциями, мы переходим от системы дифференциальных уравнений относительно фазовых координат x 1 ,…, xn . ) Напомним, что задача оптимального быстродействия заключается в отыскании такого управления u( t) , для которого фазовая траектория x( t) , соответствующая этому управлению в силу уравнения (1.5), проходит через точку x 1 и переход из x 0 вx 1 осуществляется за кратчайшее время. Такое управление u( t) будем называть оптимальным управлением (в смысле быстродействия) ; точно так же соответствующую траекторию x( t) буде называть оптимальной траекторией . 4. Допустимые управления. Обычно управляющие параметры u 1 ,…, ur не могут принимать совершенно произвольные значения, а подчинены некоторым ограничениям. Так, например, в случае объекта, описанного на стр. 4, естественно предположить, что сила u , развиваемая двигателем, не может быть как угодно большой по величине, а подчинена ограничениям α ≤u ≤β , где α и β – некоторые постоянные, характеризующие двигатель. В частности, при α= ─1, β= 1 мы получаем ограничение ─1≤u ≤1, которое означает, что двигатель может развивать силу, направленную вдоль оси x 1 как в положительном, так и в отрицательном направлении, но не превосходящую единицы по абсолютной величине. Для объектов, содержащих r управляющих параметров u 1 ,…, ur , в приложениях часто встречается случай, когда эти параметры могут произвольно меняться в следующих пределах: α 1 ≤u 1 ≤ β 1 , α 2 ≤u 2 ≤β 2 ,…, α r ≤ur ≤βr . Иначе говоря, каждая из величин u 1 , u 2 ,…, u r в уравнениях (1.2) представляет собой отдельный управляющий параметр, область изменения которого не зависит от значений остальных управляющих параметров и задаётся неравенствами α i ≤ui ≤β i , i= 1,…,r. (1.6) Заметим, что при r =2 точки u= (u 1 , u 2 ), координаты которых подчинены неравенствам (1.6), заполняют прямоугольник; при r= 3 неравенства (1.6) определяют в пространстве переменных u 1 , u 2 , u 3 прямоугольный параллелепипед; в случае произвольного r говорят, что неравенства (1.6) определяют r-мерный параллелепипед. В общем случае будем считать, что в соответствии с конструкцией объекта и условиями его эксплуатации задано в пространстве переменных u 1 ,…, ur некоторое множество U и управляющие параметры u 1 , u 2 ,…, ur должны в каждый момент времени принимать лишь такие значения, чтобы точка u= (u 1 , u 2 ,…, ur ) принадлежала множеству U . Иначе говоря, разрешается рассматривать лишь такие управления u( t) , что u( t) U для любого t . Множество U в дальнейшем будем называть областью управления . Область управления U не всегда будет параллелепипедом; она может иметь геометрически более или менее сложный характер, так как в силу конструкции объекта между управляющими параметрами u 1 , u 2 ,…, ur могут существовать связи, выражаемые, например, уравнениями вида φ(u 1 , u 2 ,…, ur )=0 или неравенствами ψ(u 1 , u 2 ,…, ur )≤0. Так, если параметры u 1 , u 2 характеризуют векторную величину на плоскости, модуль которой не превосходит единицы, а направление произвольно, то эти параметры подчинены только одному условию (u 1 )2 +(u 2 )2 ─1≤0 (1.7) и область управления U представляет собой круг. В дальнейшем будем предполагать, что указание области управления входит в математическое определение объекта, т. е. что для математического задания управляемого объекта надо указать закон его движения (1.2) и область управления U . Наконец, сделаем ещё одно, весьма существенное предположение о характере управлений. Именно, будем предполагать, что «рули», положения которых характеризуются управляющими параметрами u 1 , u 2 ,…, ur , безынерционны, так что мы можем, если нужно, мгновенно переключать эти «рули» из одного положения в другое, т. е. менять скачком значения управляющих параметров u 1 , u 2 ,…, ur . В соответствии с этим будем рассматривать не только непрерывные, но и кусочно-непрерывные управления u( t) . Кроме того, будем предполагать, что каждое рассматриваемое управление u( t) непрерывно на концах отрезка t 0 ≤t ≤t 1 , на котором оно задано, т. е. что все точки разрыва, если они есть, расположены на интервале t 0 <t <t 1 . Для удобства условимся называть допустимым управлением всякую кусочно-непрерывную функцию u (t ), t 0 ≤t ≤t 1 , со значениями в области управления U , непрерывную справа в точках разрыва (для определённости нам так удобно предполагать) и непрерывную в концах отрезка [t 0 ; t 1 ], на котором она задана. Задача об оптимальных быстродействиях уточняется теперь следующим образом: Среди всех допустимых управлений u= u( t), под воздействием которых управляемый объект (1.3) переходит из заданного начального фазового состояния x 0 в предписанное конечное состояние x 1 , найти такое, для которого этот переход осуществляется за кратчайшее время § 2. Об основных направлениях в теории оптимальных процессов 5. Метод динамического программирования. Для управляемого объекта, описанного в предыдущем параграфе, мы рассмотрим задачу об оптимальном переходе ─ в смысле быстродействия ─ из фазового состояния x в фазовое состояние x 1 . При этом конечную фазовую точку x 1 будем считать фиксированной, а в качестве начальной точки x будем рассматривать различные точки фазового пространства. Мы будем предполагать в этом пункте, что для рассматриваемого управляемого объекта выполняется следующая гипотеза: Г и п о т е з а 1. Какова бы ни была отличная от x 1 точка x фазового пространства, существует оптимальный (в смысле быстродействия) процесс перехода из точки x 0 в точку x 1 (рис. 6). Время, в течение которого осуществляется оптимальный переход из точки x 0 в точку x 1 , обозначим через T( x ). В дальнейших рассуждениях будет удобно вместо T( x ) ввести функцию ω (x ), отличающуюся от неё знаком ω (x )= ─T(x ). (1.8) Так как каждая точка x фазового пространства имеет координаты x 1 ,…, xn , то ω (x )= ─T( x ) является функцией от n переменных, т. е. ω (x )= ω (x 1 ,…, xn ). Поэтому имеет смысл говорить о непрерывности этой функции (по совокупности переменных x 1 ,…, xn ) и о дифференцируемости этой функции по каждой из переменных x 1 ,…, xn . А также будем предполагать, что для рассматриваемого управляемого объекта выполняется следующая гипотеза: Г и п о т е з а 2. Функция ω (x ) непрерывна и всюду, кроме точки x 1 , имеет непрерывные частные производные Пусть теперь x 0 ─ произвольная отличная от x 1 точка фазового пространства, а u 0 ─ произвольная точка области U . Предположим, что объект находится в момент t 0 в фазовом состоянии x 0 и движется в течение некоторого времени под воздействием постоянного управления u= u 0 . Фазовую траекторию объекта при этом движении обозначим через y (t)=(y 1 ( t),…, yn ( t )). Таким образом, фазовая траектория y( t ) при t> t 0 удовлетворяет уравнениям (1.9) (см. (1.2), (1.3)) и начальному условию y (t 0 )=x 0 . (1.10) Если мы будем двигаться из точки x 0 до точки y( t ) (по рассматриваемой фазовой траектории), то затратим на это движение время t ─ t 0 . Двигаясь затем из точки y( t ) оптимально, мы затратим на движение от точки y (t ) до точки x 1 время T( y( t )). В результате мы совершим переход из точки x 0 в точку x 1 , затратив на этот переход время (t ─t 0 )+T (y (t)). Но так как оптимальное время движения от точки x 0 до точки x 1 равно T (x 0 ), т. е. равно T (y (t 0 )), то T (y(t 0 ))≤(t ─t 0 )+T (y (t )). Заменяя функцию T через ω (см. (1.8)) и разделив обе части неравенства на положительную величину t ─t 0 , получаем отсюда и поэтому, переходя к пределу при t→ t 0 , находим │при ≤1. (1.11) Но производная, указанная в левой части этого неравенства, вычисляется по формуле полной производной Поэтому согласно (1.9) и (1.10) неравенство (1.11) принимает вид Точки x 0 , u 0 здесь были произвольными. Таким образом, для любой (отличной от x 1 ) точки x фазового пространства и любой точки u области управления U выполнено соотношение (1.12) Пусть теперь (u (t ), x (t )) ─ оптимальный процесс, переводящий объект из фазового состояния x 0 в состояние x 1 , и t 0 ≤t ≤t 1 ─ отрезок времени, в течение которого это оптимальное движение происходит, так что x (t 0 )=x 0 , x (t 1 )=x 1 и t 1 =t 0 + T (x 0 ). Движение по рассматриваемой оптимальной траектории от точки x 0 до точки x (t ) осуществляется в течение времени t ─t 0 , а движение от точки x (t ) до точкиx 1 ─ в течение времени T (x 0 ) ─ (t ─t 0 ). Быстрее, чем за время T (x 0 ) ─ (t ─t 0 ), из точки x (t ) попасть в точку x 1 невозможно. Итак, T (x 0 ) ─ (t ─t 0 ) есть время оптимального движения из точки x (t ) в точку x 1 , т. е. T (x (t ))=T (x 0 ) ─ (t ─t 0 ). Заменив здесь T через ω , т. е. ω (x (t ))=ω (x 0 ) + t ─t 0 ) и взяв производную по t , получаем t 0 ≤t ≤t 1 . (1.13) Таким образом, для каждого оптимального процесса в течение всего движения выполняется равенство (1.13). Если мы теперь введём в рассмотрение функцию B (x, u (t ))=, (1.14) То соотношения (1.12) и (1.13) могут быть записаны следующим образом: B (x, u )≤1 для всех точек x ≠x 1 и u ; (1.15) B (x, u )≡1 для любого оптимального процесса (u (t ), x (t )). (1.16) Итак, справедлива следующая Т е о р е м а 1.1. Если для управляемого объекта, описываемого уравнением (1.5) и предписанного конечного состояния x 1 выполнены гипотезы 1 и 2, то имеют место соотношения (1.15) и (1.16) (оптимальность понимается в смысле быстродействия). Эта теорема и составляет сущность метода динамического программирования для рассматриваемой задачи. Эту теорему можно сформулировать и несколько иначе. Написав соотношение (1.16) Для t =t 0 , получим B (x 0 , u (t 0 ))=1, т. е. для любой точки x 0 (отличной от x 1 ) найдётся в U такая точка u (а именно u= u (t 0 )), что B (x 0 , u )=1. В сопоставлении с неравенством (1.15) получаем соотношение для любой точки x ≠x 1 . (1.16* ) Метод динамического программирования (1.15), (1.16) (или, что то же самое, (1.16* ), (1.16)) содержит некоторую информацию об оптимальных процессах и потому может быть использован для их разыскания. Однако он имеет ряд неудобств. Во-первых, применение этого метода требует нахождения не только оптимальных управлений, но и функции ω (x ), так как эта функция входит в соотношения (1.15) ─ (1.16* ). Во-вторых, уравнение Беллмана (1.16* ) (или соотношения (1.15), (1.16)) представляет собой уравнение в частных производных относительно функции ω , осложнённое к тому же знаком максимума. Указанные обстоятельства сильно затрудняют возможность пользования методом динамического программирования для отыскания оптимальных процессов в конкретных примерах. Но самым главным недостатком этого метода является предположение о выполнении гипотез 1 и 2. Ведь оптимальные управления и функция ω нам заранее не известны, так что гипотезы 1 и 2 содержат предположение о неизвестной функции, и проверить выполнение этих гипотез по уравнениям движения объекта невозможно. Этот недостаток можно было бы считать не особенно существенным, если бы после решения оптимальной задачи этим методом оказалось, что функция ω (x ) действительно является непрерывно дифференцируемой. Но дело заключается в том, что даже в простейших, линейных задачах оптимального управления функция ω (x ) не является, как правило, всюду дифференцируемой. Тем не менее, методом динамического программирования можно нередко пользоваться как ценным эвристическим средством. 6. Принцип максимума. Продолжим теперь рассуждения предыдущего пункта, предположив функцию ω (x ) уже дважды непрерывно дифференцируемой (всюду, кроме точки x 1 ). Итак, будем предполагать, что выполнена следующая Г и п о т е з а 3. функция ω (x ) имеет при x≠ x 1 вторые непрерывные производные i, j= 1,2,…,n , а функции fi (x, u ) ─ первые непрерывные производные где i, j= 1,2,…,n. Пусть (u( t), x( t) ), t 0 ≤t ≤t 1 , ─ оптимальный процесс, переводящий объект (1.2) (или (1.3)) из фазового состояния x 0 в состояние x 1 . Фиксируем некоторый момент времени t , t 0 ≤t ≤t 1 , и рассмотрим функцию B (x, u (t ))=переменного x. В силу гипотезы 3 вытекает, что функция B (x, u (t )) всюду, кроме точки x 1 , имеет непрерывные производные по переменным x 1 ,x 2 ,…,xn : (1.17) В частности, так как x (t )≠x 1 (поскольку t <t 1 ), то функция B (x, u (t )) имеет вблизи точки x =x (t ) непрерывные производные по переменным x 1 ,x 2 ,…,xn . Далее, мы имеем в силу (1.15), (1.16) B (x, u (t ))≤1 для любого x≠ x 1 ; B (x, u (t ))=1 при x= x (t ). Эти два соотношения означают, что функция B (x, u (t )) достигает в точке x =x (t ) максимума, и потому её частные производные по x 1 ,…, xn обращаются в нуль в этой точке: (1.18) Кроме того, дифференцируя функцию по t, находим Поэтому соотношение (1.18) может быть переписано в следующем виде: (1.19) Заметим теперь, что в формулы (1.15), (1.16), (1.17) и (1.19) сама функция ω не входит, а входят только её частные производные . Поэтому мы введём для удобства следующие обозначения: (1.20) Тогда функция B (см. (1.14)) записывается таким образом: B (x (t ), u (t ))= и соотношение (1.16) принимает вид , для оптимального процесса (x (t ), u (t )), t 0 ≤t <t 1 . (1.21) Кроме того, согласно (1.15) для любой точки uU и всех t 0 ≤t <t 1 . (1.22) Наконец, соотношения (1.19) записываются следующим образом: (1.23) Итак, если (u (t ), x (t )), t 0 ≤t <t 1 , ─ оптимальный процесс, то существуют такие функции ψ 1 (t ), ψ 2 (t ),…, ψ n (t ) (они определяются равенствами (1.20)), что имеют место соотношения (1.21), (1.22), (1.23). Рассмотрение левых частей соотношений (1.21), (1.22) подсказывает нам, что целесообразно ввести в рассмотрение следующую функцию: (1.24) зависящую от 2n+ r аргументов ψ 1 , ψ 2 ,…, ψ n , x 1 ,…, xn , u 1 ,…, ur . С помощью этой функции соотношения (1.21), (1.22) записываются в следующем виде: для оптимального процесса (u (t ), x (t )), t 0 ≤t <t 1 , (1.25) где ψ (t )=(ψ 1 (t ),…,ψ n (t )) определяются равенствами (1.20); для любой точки uU и всех t 0 ≤t <t 1 . (1.26) Вместо неравенства (1.26) мы можем в силу (1.25) написать следующее соотношение: t 0 ≤t <t 1 . (1.27) Наконец, соотношения (1.23) можно, очевидно, переписать так: (1.28) Итак, если (u (t ), x (t )), t 0 ≤t <t 1 , ─ оптимальный процесс , то существует такая функция ψ (t )=(ψ 1 (t ),…, ψ n (t )), что выполняются соотношения (1.25), (1.27), (1.28), где функция H определяется соотношением (1.24). Так как в соотношениях (1.24), (1.25), (1.27), (1.28) нигде не участвует явно функция ω (x ), то равенства (1.20), выражающие функции ψ 1 (t ),…, ψ n (t ) через ω , никаких добавочных сведений не дают, и о них можно забыть, ограничившись утверждением, что какие-то функции ψ 1 (t ),…, ψ n (t ), удовлетворяющие перечисленным соотношениям (1.25), (1.27), (1.28), существуют. Соотношения (1.28) представляют собой систему уравнений, которым эти функции удовлетворяют. Заметим, что функции ψ 1 (t ),…, ψ n (t ) составляют нетривиальное решение этой системы (т. е. ни в какой момент времени t все эти функции одновременно в нуль не обращаются); действительно, если бы при некотором t было ψ 1 (t )= ψ 2 (t )=…=ψ n (t )=0, то в силу (1.24) мы получили бы H (ψ (t ), x (t ), u (t ))=0, что противоречит равенству (1.25). Таким образом, мы получаем следующую теорему, которая носит название принципа максимума. Т е о р е м а 1.2. Предположим, что для рассматриваемого управляемого объекта, описываемого уравнением (в векторной форме ) (A) и предписанного конечного состояния x 1 выполнены гипотезы 1, 2 и 3. Пусть (u (t ), x (t )), t 0 ≤t ≤t 1 , ─ некоторый процесс, переводящий объект из начального состояния x 0 в состояние x 1 . Введём в рассмотрение функцию H, зависящую от переменных x 1 (t ),…, xn (t ), u 1 ,…, ur и некоторых вспомогательных переменных ψ 1 (t ),…, ψ n (t ) (см. (1.24)): (B) С помощью этой функции H запишем следующую систему дифференциальных уравнений для вспомогательных переменных: (C) где (u (t ), x (t )) ─ рассматриваемый процесс (см. (1.28)). Тогда, если процесс (u (t ), x (t )), t 0 ≤t <t 1 , является оптимальным, то существует такое нетривиальное решение ψ (t )=(ψ 1 (t ),…, ψ n (t )), t 0 ≤t <t 1 , системы (C), что для любого момента t, t 0 ≤t <t 1 , выполнено условие максимума (D) (см. (1.27)) и условие (1.25) H (ψ (t ),x (t ),u (t ))=1. Однако в приведённой здесь форме принцип максимума страдает одним недостатком: он выведен в предположение дифференцируемости (и даже двукратной) функции ω (x ), а эта функция в действительности не является (в обычно встречающихся случаях) всюду дифференцируемой. Из-за предположения о выполнении сформулированных гипотез (о функции ω (x )) принцип максимума в том виде, в каком он сформулирован выше, не является удобным условием оптимальности. По форме он выведен как необходимое условие оптимальности: если процесс оптимален, то выполнено соотношение (1.16* ) и соответственно (D), т. е. выполнение этого условия необходимо для оптимальности. Однако это условие выведено лишь в предположении выполнения гипотез 1, 2, 3, а их выполнение отнюдь не необходимо для оптимальности. Вот почему сформулированные выше теоремы не могут считаться необходимыми условиями оптимальности. Замечательным, однако, является тот факт, что если в теореме 1.2 решение ψ (t ) и условие максимума (D) рассматривать на всём отрезке t 0 ≤t ≤t 1 (а не только при t 0 ≤t <t 1 ), а заключительное условие H (ψ (t 1 ), x (t 1 ), u (t 1 ))≥0, (E) то в этой форме принцип максимума будет справедлив без каких бы то ни было предположений о функции ω, т. е. принцип максимума станет весьма удобным и широко применимым необходимым условием оптимальности. § 3. Пример. Задача синтеза 7. Пример применения принципа максимума. В этом пункте мы разберём один пример вычисления оптимальных процессов. Именно, рассмотрим управляемый объект, упомянутый в п. 3 (см. уравнения (1.1)), при условии, что сила трения и упругая сила отсутствуют (т. е. b =0, k =0), масса m равна единице (m =1), а управляющий параметр подчинён ограничениям |u |≤1. Иначе говоря, мы рассматриваем материальную точку G массы m= 1 (см. рис. 10), свободно и без трения движущуюся по горизонтальной прямой и снабжённую двигателем, развивающим силу u , где |u |≤1. Согласно (1.1) уравнения движения этого объекта имеют вид: (1.29) ─1≤u ≤1. (1.30) Для этого объекта рассмотрим задачу о быстрейшем попадании в начало координат (0, 0) из заданного начального состояния x 0 =(x 0 1 , x 0 2 ). Иначе говоря, будем рассматривать задачу об оптимальном быстродействии в случае, когда конечным положением служит точка x 1 =(0, 0). Механически это означает, что материальную точку, имеющую заданное положение x 0 1 и заданную начальную скорость x 0 2 , мы хотим за кратчайшее время привести в начало отсчёта с нулевой скоростью (т. е. добиться того, чтобы точка пришла в начало отсчёта и остановилась там). Функция H в рассматриваемом случае имеет вид H =ψ 1 x 2 +ψ 2 u (1.31) (см. (1.29) и (B)). Далее, для вспомогательных переменных ψ 1 , ψ 2 мы получаем систему уравнений . Из этой системы уравнений находим: ψ 1 =d 1 ; ψ 2 = ─d 1 t+ d 2 , где d 1, d2 ─ постоянные интегрирования. Далее, в силу соотношения максимума (D) мы находим, учитывая (1.31) и (1.30): u (t )= +1, если ψ 2 (t )>0; u (t )= ─1, если ψ 2 (t )<0. Иначе говоря, u (t )=signψ 2 (t )=sign (─ d 1 t + d 2 ). Отсюда следует, что каждое оптимальное управление u (t ), t 0 ≤t ≤t 1 , является кусочно-постоянной функцией, принимающей значения и имеющей не более двух интервалов постоянства (ибо линейная функция ─d 1 t + d 2 не более одного раза меняет знак на отрезке t 0 ≤t ≤t 1 ). Для отрезка времени, на котором u1, мы имеем (в силу системы (1.29)) , откуда находим x 1 =1/2(x 2 )2 +c . (1.32) Таким образом, кусок фазовой траектории, для которого u1, представляет собой дугу параболы (1.32). Семейство парабол (1.32) показано на рис. 13 (они получаются друг из друга сдвигом в направлении осиx 1 ). По этим параболам фазовые точки движутся снизу вверх (ибо = u 1, т. е. ). Аналогично для отрезка времени, на котором u ─1, мы имеем, откуда находим x 1 = ─1/2(x 2 )2 + c ’. (1.33) Семейство парабол (1.33) (также получающихся друг из друга сдвигом в направлении оси x 1 ) показано на рис. 14. По параболам (1.33) фазовые точки движутся сверху вниз (ибо ) Как было указано выше, каждое оптимальное управление u (t ) является кусочно-постоянной функцией, принимающей значения и имеющей не более двух интервалов постоянства. Если управление u (t ) сначала, в течение некоторого времени, равно +1, а затем равно ─1, то фазовая траектория состоит из двух кусков парабол (рис. 15), примыкающих друг к другу, причём второй из этих кусков лежит на той из парабол (1.33), которая проходит через начало координат (ибо искомая траектория должна вести в начало координат). Если же, наоборот, сначала u= ─1, а затем u= + 1, то мы получаем фазовую траекторию, изображённую на рис. 16. На рис. 15, 16 надписаны на дугах парабол соответствующие значения управляющего параметра u . На рис. 17 изображено всё семейство полученных таким образом фазовых траекторий (здесь AO ─ дуга параболы x 1 =1/2(x 2 )2 , расположенная в нижней полуплоскости; BO ─ дуга параболы x 1 = ─1/2(x 2 )2 , расположенная в верхней полуплоскости). Итак, согласно принципу максимума только изображённые на рис. 17 траектории могут быть оптимальными, причём видно, что из каждой точки фазовой плоскости исходит только одна траектория, ведущая в начало координат, которая может быть оптимальной (т. е. задание начальной точки x 0 однозначно определяет соответствующую траекторию). 8. Проблема синтеза оптимальных управлений. Посмотрим на разобранный в предыдущих пунктах пример с несколько иной точки зрения. Найденное выше решение оптимальной задачи можно истолковать следующим образом. Обозначим через v (x )= +1 ниже линии AOB и на дуге AO , v (x )= ─1 выше линии AOB и на дугеBO . Тогда (см. 17) на каждой оптимальной траектории значение u (t ) управляющего параметра (в произвольный момент времени t ) равно v (x (t )), т. е. равно значению функции v в той точке, в которой в момент t находится движущаяся фазовая точка, пробегающая оптимальную траекторию u (t )=v (x (t )). Это означает, что, заменив в системе (1.29) величину u функцией v (x ), мы получим систему (1.34) решение которой (при произвольном начальном состоянииx 0 ) даёт оптимальную фазовую траекторию, ведущую в начало координат. Иначе говоря, система (1.34) представляет собой систему дифференциальных уравнений (с разрывной правой частью) для нахождения оптимальных траекторий, ведущих в начало координат. Рассмотренный пример показывает, что решение задачи об оптимальных управлениях естественно ожидать в следующей форме. Будем решать оптимальную задачу в общей постановке: (см. п. 3), рассматривая всевозможные начальные состояния и каждый раз предписывая в качестве конечного состояния начало координат O фазового пространства. Тогда (насколько можно судить по разобранному выше примеру) существует такая функция v (x ), заданная в фазовом пространстве V принимающая значения в области управления U, что уравнение (1.35) определяет все оптимальные траектории, ведущие в начало координат. Иначе говоря, оптимальное управление оказывается естественным искать не в форме u= u (t ), а в форме u= v (x ), т. е. искомое оптимальное управление в каждый момент зависит лишь от того, в какой точке пространства находится в данный момент фазовая точка . Функцию v (x ), дающую уравнение оптимальных траекторий в форме (1.35), называют синтезирующей функцией, а задачу нахождения синтезирующей функции ─ задачей синтеза оптимальных управлений. В разобранном примере синтезирующая функция была кусочно-непрерывной (даже кусочно-постоянной). Г л а в а II ЛИНЕЙНЫЕ ОПТИМАЛЬНЫЕ БЫСТРОДЕЙСТВИЯ § 4. Линейная задача оптимального управления 9. Формулировка задачи. Ниже будут подробно изучены управляемые объекты, движение которых описывается линейными дифференциальными уравнениями относительно величин x 1 ,…,xn , u 1 ,…,ur , т. е. уравнениями вида i =1,2,…,n , (2.1) где ai α и bi β ─ некоторые постоянные коэффициенты. Одним из наиболее важных для приложений является случай, когда каждая из величин u 1 , u 2 ,…, ur в уравнениях (2.1) представляет собой отдельный управляющий параметр, область изменения которого не зависит от значений остальных управляющих параметров и задаётся неравенствами β =1,…,r . (2.2) Как было указано выше (см. п. 4), эти неравенства определяют r -мерный параллелепипед . В дальнейшем при рассмотрении объектов вида (2.1) будет предполагаться, что управляющий параметр u= (u 1 ,u 2 ,…, ur ) может меняться в замкнутой области управления U , представляющей собой выпуклый многогранник (лежащий в пространстве переменных u 1 ,u 2 ,…, ur ). Для того чтобы записать уравнения (2.1) в векторной форме, мы введём в рассмотрение матрицы (2.3) элементами которых являются коэффициенты ai α , bi β , входящие в уравнения (2.1). Как обычно, результат применения матрицы A к векторуx =(x 1 , x 2 ,…, xn ) мы будем обозначать символом Ax , т. е. y =Ax есть n- мерный вектор, координаты которого определяются формулами (2.4) Аналогично для любого r- мерного вектора u= (u 1 , u 2 ,…, ur ) через Bu обозначается вектор, i- я координата которого равна Таким образом, матрица A определяет линейное отображение координатного n- мерного пространства снова в n- мерное пространство, а матрица B определяет отображение r- мерного пространства в n- мерное. Пользуясь матрицами A и B , мы можем теперь записать уравнения (2.1) в векторной форме: (2.5) Пусть u (t )=(u 1 , u 2 ,…, ur ) ─ произвольное допустимое (в смысле п. 4) управление, заданное на некотором отрезке t 0 ≤t ≤t 1 , и x 0 =(x 1 0 ,…, xn 0 ) ─ некоторая точка фазового пространства. Обозначим θ 1 , θ 2 ,…, θ k все точки, в которых хотя бы одна из функций u 1 (t ), u 2 (t ),…, ur (t ) терпит разрыв, причём занумеруем эти точки таким образом, что t 0 <θ 1 <θ 2 <…<θ k <t 1 . Подставив функции u 1 (t ), u 2 (t ),…, ur (t ) в правые части системы (2.1),мы придём к системе уравнений (2.6) или в векторной форме, (2.7) Систему (2.7) мы рассмотрим сначала для значений t , удовлетворяющих неравенствам t 0 ≤t ≤θ 1 . На этом отрезке изменения аргумента существуют такие функции x 1 (t ),…, xn (t ), определённые и непрерывные на всём отрезке t 0 ≤t ≤θ 1 , которые, рассматриваемые на интервале t 0 <t <θ 1 , являются решениями системы (2.6) и, кроме того, удовлетворяют начальным условиям x 1 (t 0 )=x 1 0 , x 2 (t 0 )=x 2 0 ,…, xn (t 0 )=xn 0 (согласно сведениям из дифференциальных уравнений (см. книгу Л.С. Понтрягина «Обыкновенные дифференциальные уравнения», «Наука», М., 1965 (стр. 23, 24 и 168-172))). Теперь мы можем рассмотреть систему (2.6) на отрезке θ 1 ≤t ≤θ 2 , воспользовавшись точкой γ 1 =(x 1 (θ 1 ),…, xn (θ 1 ), θ 1 ) в качестве начального значения. На отрезке θ 1 ≤t ≤θ 2 снова существует решение с начальным значением γ 1 . Это решение мы снова обозначим через x (t )=(x 1 (t ),…, xn (t )). Теперь функция x (t ) построена на отрезке t 0 ≤t ≤θ 2 и непрерывна на всём этом отрезке (и, в частности, в «точке сопряжения» θ 1 ;). Воспользовавшись, далее, новым начальным значением γ 2 =(x 1 (θ 2 ),…, xn (θ 2 ), θ 2 ), мы продолжим эту функцию x (t ) на отрезок θ 2 ≤t ≤θ 3 и т. д. В конце концов мы определим x (t ) на всём отрезке t 0 ≤t ≤t 1 . Полученная функция x (t )=(x 1 (t ),…, xn (t )) непрерывна на всём отрезке t 0 ≤t ≤t 1 и является на нём кусочно-дифференцируемой ; именно, во всех точках интервала t 0 <t <t 1 , кроме θ 1 , θ 2 ,…, θ k , функция x (t ) непрерывно дифференцируема (и удовлетворяет системе (2.6)). Построенную функцию мы будем называть решением системы (2.6) (или уравнения (2.7)), соответствующим управлению u (t ), при начальном условии x 1 (t 0 )=x 1 0 , x 2 (t 0 )=x 2 0 ,…, xn (t 0 )=xn 0 . Наконец, мы будем говорить, что допустимое управление u (t ), t 0 ≤t ≤t 1 , переводит фазовую точку из состояния x 0 в состояние x 1 (в силу закона движения (2.1) или (2.5)), если соответствующее ему решение x (t ) системы (2.1), удовлетворяющее начальному условию x (t 0 )=x 0 , приходит в момент t 1 в точку x 1 , т. е. удовлетворяет также «конечному» условию x (t 1 )=x 1 . Теперь можно уточнить постановку задачи. Линейной задачей оптимального управления мы будем называть задачу об отыскании оптимальных быстродействий в случае, когда выполнены следующие три условия: 1 ) уравнения движения объекта линейны (см. (2.1) или (2.5)); 2 ) предписанное конечное состояние x 1 совпадает с началом координат (0, 0,…, 0) n -мерного фазового пространства переменных x 1 , x 2 ,…,xn ; 3 ) область управления U является r -мерным выпуклым многогранником в r -мерном пространстве (u 1 , u 2 ,…, ur ), причём начало координат этого пространства принадлежит многограннику U , но не является его вершиной. Заметим, что начало координат xi =0, i =1,…,n , является положением равновесия системы (2.8) получающейся из системы (2.1) отбрасыванием управлений (т. е. получающейся из (2.1) при u 1 = u 2 =…=ur =0). Таким образом, условие 2) означает, что ищется управление, переводящее объект из заданного начального состояния x 0 в положение равновесия. 10. Принцип максимума. В пункте 6 мы сформулировали необходимое условие оптимальности, называемое принципом максимума . Данный пункт посвящён принципу максимума в случае линейной задачи оптимального управления. Вначале укажем те упрощения в формулировке принципа максимума, которые возникают в этом частном случае (т. е. в случае линейной задачи оптимального управления). Заметим, прежде всего, что функция H (см. формулу (B) на стр. 10) принимает вид (2.9) (Здесь в правой части записаны скалярные произведения; например, ψ Ax есть скалярное произведение векторов ψ и Ax .) Далее, рассмотрим систему дифференциальных уравнений для вспомогательных переменных ψ 1 , ψ 2 ,…, ψ n (см. формулу (C) на стр. 10). Мы имеем Следовательно, система уравнений для вспомогательных переменных принимает вид (2.10) т. е. представляет собой так называемую сопряжённую систему (по отношению к линейной системе (2.8)). В векторной форме система (2.10) записывается в виде (2.11) где ─ матрица, получающаяся из матрицы A транспонированием (т. е. заменой строк столбцами). Так как в правой части соотношения (2.9) первое слагаемое совсем не зависит от u , то при написании соотношения (D) (см. стр. 11) достаточно рассмотреть лишь второе слагаемое. Таким образом, соотношение (D) принимает в рассматриваемом случае вид (2.12) для любого момента τ , t 0 ≤τ≤ t 1 . Наконец, соотношение (E) (стр. 11) становится просто ненужным, так как в рассматриваемом случае оно всегда выполняется. Действительно, так как x (t 1 )=(0, 0,…, 0) (условие 2) на стр. 15), то в H (ψ (t 1 ), x (t 1 ), u (t 1 )) первое слагаемое обращается в нуль (см. (2.9)). Второе же слагаемое, в силу (2.12), заведомо неотрицательно, ибо при u 1 =…=ur =0 (эта точка, в силу условия 3) на стр.15, принадлежит многограннику U ) мы имеем ψ (τ )Bu =0, а потому максимальное значение выражения ψ (τ )Bu неотрицатнльно. Итак, соотношение H (ψ (t 1 ), x (t 1 ), u (t 1 ))³0 для линейной оптимальной задачи всегда выполнено. Сказанное можно резюмировать следующим образом. Пусть u (t ), t 0 £t £t 1 , - допустимое управление, переводящее объект (2.5) из заданного начального состояния x 0 в положение равновесия (0, 0,…, 0). Будем говорить, что управление u (t ) удовлетворяет принципу максимума , если существует такое нетривиальное решение y(t ) уравнения (2.11), для которого выполняется условие максимума (2.12) (в каждый момент времени t, t 0 £t£t 1 ). Для оптимальности управления u (t ) необходимо, чтобы оно удовлетворяло принципу максимума . Это и есть та упрощённая формулировка принципа максимума, к которой мы приходим в случае линейной задачи оптимального управления. 11. Принцип максимума — необходимое и достаточное условие оптимальности. Замечательным фактом является то, что в случае линейной задачи оптимального управления принцип максимума представляет собой не только необходимое, но и достаточное условие оптимальности. Однако факт этот имеет место не для произвольной линейной задачи — имеются малосущественные исключения. Поэтому мы наложим на линейную задачу некоторое ограничение, называемое условием общности положения . Сформулируем это условие: Условие общности положения : если w — вектор, параллельный произвольному ребру многогранника U, то вектор B w не принадлежит никакому собственному инвариантному подпространству относительно преобразования A . Невыполнение условия общности положения означает, что хотя бы для одного ребра многогранника U векторы B w , AB w , A 2 B w ,…, An -1 B w линейно зависимы, т. е. определитель n- го порядка, составленный из координат этих векторов, обращается в нуль. Однако всюду в дальнейшем условие общности положения предполагается (если не оговорено противное ) выполненным . Теперь перейдём к теореме, упоминавшейся в начале этого пункта. Т е о р е м а 2.1. Пусть u (t ), t 0 £t £t 1 , — допустимое управление, переводящее объект из заданного начального состояния x 0 в положение равновесия (0, 0,…, 0). Для оптимальности управления u (t ) необходимо и достаточно, чтобы оно удовлетворяло принципу максимума . 12. Основные теоремы о линейных оптимальных быстродействиях. Т е о р е м а 2.2. Для каждого нетривиального решения y (t ) уравнения (2.11) соотношение (2.12) однозначно определяет допустимое управление u (t ); при этом оказывается, что функция u (t ) кусочно-постоянна и её значениями являются лишь вершины многогранника U . Каждую точку разрыва оптимального управления мы будем называть точкой переключения . Т е о р е м а 2.3. Предположим, что многогранник U является r-мерным параллелепипедом (2.2) и что все собственные значения матрицы A= (ai j ), составленной из коэффициентов уравнений (2.1), действительны. Тогда в оптимальном управлении u (t )=(u 1 (t ),…, ur (t )) каждая из функций u b (t ), b=1,…,r , кусочно-постоянна, принимает только значения a b и b b (см. (2.2)) и имеет не более n- 1 переключений (т. е. не более n интервалов постоянства ), где n — порядок системы (2.1). Т е о р е м а 2.4 (т е о р е м а е д и н с т в е н н о с т и). Пусть u 1 (t ) и u 2 (t ) — два оптимальных управления, заданных соответственно на отрезках t 0 £t £t 1 и t 0 £t £t 2 и переводящих точку x 0 в начало координат . Тогда эти управления совпадают , т. е. t 1 =t 2 и u 1 (t )ºu 2 (t ) на отрезке t 0 £t £t 1 . Областью управляемости для объекта (2.5)мы будем называть множество всех точек x 0 фазового пространства X , из которых возможно при помощи какого-либо допустимого управления попасть в начало координат. Само начало координат мы также будем причислять к области управляемости. Ясно, что вопрос о нахождении оптимальных процессов разумно ставить лишь в случае, если начальное фазовое состояние x 0 принадлежит области управляемости (ведь из точек, не принадлежащих области управляемости, вообще нельзя попасть в начало координат). Т е о р е м а 2.5 (т е о р е м а с у щ е с т в о в а н и я). Область управляемости является выпуклым открытым множеством фазового пространства X ; для любой точки x 0 , принадлежащей области управляемости , существует оптимальное управление , переводящее точку x 0 в начало координат . Т е о р е м а 2.6. Если в линейной задаче оптимального управления матрица A (см. (2.3)) устойчива , т. е. все её собственные значения имеют отрицательные действительные части, то область управляемости совпадает со всем фазовым пространством X . Следовательно , для любой точки x 0 Î X существует оптимальное управление , переводящее фазовую точку x 0 в начало координат . § 5. Решение задачи синтеза для линейных задач второго порядка 13. Упрощение уравнений линейного управляемого объекта. Нередко бывает, что в линейной задаче общая запись уравнений движения объекта в виде (2.1) неудобна и целесообразно воспользоваться некоторыми упрощениями. Мы здесь отметим стандартные упрощения, которые можно осуществить с помощью замены координат. - Прежде всего, рассмотрим вопрос о замене координат в фазовом пространстве X рассматриваемого управляемого объекта. Предположим, что в пространстве X вместо координат x 1 ,…, xn введены новые координаты y 1 ,…, yn , связанные с прежними координатами соотношениями (2.13) (где матрицы P =(pi j ) и Q=(qi j ) взаимно обратны). Ясно, что при такой замене линейная система (2.1) превращается в новую линейную систему коэффициенты которой легко вычисляются: Таким образом, , Переходя к векторным обозначениям, можно сказать, что указанная замена координат переводит уравнение (2.5) в уравнение где матрицы C и D выражаются через матрицы A, B, P, Q по формулам C =QAP , D =QB . Очевидно, при такой замене условия 1), 2), указанные на стр. 15, сохраняются и для уравнения получаемого после замены. Далее, каждый процесс (u (t ), x (t )), удовлетворяющий уравнению переходит в процесс (u (t ), y(t )), удовлетворяющий уравнению (и обратно). Так как при этом время t не меняется, то указанная замена переводит оптимальные процессы для уравнения (и наоборот). В частности, синтез оптимальных управлений для уравнения переводится с помощью преобразования координат (2.13) в синтез оптимальных управлений для уравнения . Таким образом, если уравнение окажется проще и для него синтез оптимальных управлений можно будет построить, то из этого синтеза можно (с помощью афинного преобразования (2.13)) получит синтез и для первоначального уравнения . В этом и заключается смысл замены координат (2.13): она позволяет заменить матрицу A трансформированной матрицей C =QAP, в то же время вызывая лишь афинное искажение картины синтеза оптимальных управлений. Таким образом, преобразованием (2.13) можно воспользоваться для упрощения матрицы A , составленной из коэффициентов при фазовых координатах. - Предположим, что в уравнении матрица A уже приведена к простейшему виду (с помощью описанного выше приёма). Укажем теперь, каким образом может быть упрощена матрица B , составленная из коэффициентов при управляющих параметрах. С этой целью положим (2.14) Это означает, что вместо r управляющих параметров u 1 ,…,ur вводятся n других управляющих параметров v 1 ,…, vn , благодаря чему система (2.1) заменяется следующей: или в векторной форме, Нужно только выяснить, в каких пределах может изменяться точка v =(v 1 , v 2 ,…, vn ). Удобно считать, что эта точка v =(v 1 , v 2 ,…, vn ) расположена в том же пространстве X , что и точка x =(x 1 ,…, xn ). Соотношения (2.14) определяют линейное отображение r- мерного пространства переменных u 1 ,…,ur в фазовое пространство X . Образом многогранника U при отображении (2.14) является некоторый выпуклый многогранник в пространстве X , который мы обозначим через V . Таким образом, получаем два линейных уравнения: (2.15) (2.16) Г л а в а III СИНТЕЗ ОПТИМАЛЬНЫХ УПРАВЛЕНИЙ ДЛЯ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА § 6. Решение задачи синтеза в случае комплексных собственных значений 14. Задача синтеза для малых колебаний маятника. Здесь будет дано полное решение задачи синтеза оптимальных управлений для линейных объектов, описываемых уравнениями второго порядка. Фазовое пространство X в этом случае представляет собой плоскость. Рассмотрим колебание плоского маятника. Как известно колебание маятника, подвешенного к точке опоры, описывается дифференциальным уравнением второго порядка: (в нашем случае положим β =1) при малых колебаниях маятника Sinφ≈φ тогда уравнение движения маятника запишется в виде: (3.1) Управляющий параметр u (скалярный) будем предполагать изменяющимся в пределах -1£u £1. Пусть — угол отклонения, а — скорость маятника. Тогда уравнение (3.1) перепишется в виде следующей нормальной системы: (3.2) На плоскости x 1 , x 2 «многогранник» U будет представляться отрезком [-1, 1], расположенным на оси x 2 . Легко видеть, что ось x 2 не является собственным инвариантным подпространством матрицы A , которая для системы (3.2) имеет вид: A =, и потому условие общности положения всегда выполнено. Найдём собственные значения матрицы A . Для этого составим характеристическое уравнение |λE─ A |=0, т. е. λ 2 +λ +1=0. Откуда находим, что собственные значения матрицы A такие: т. е. собственные значения матрицы A комплексные. Введём обозначения где b ≠0. Тогда матрица A преобразуется к виду: =. Будем рассматривать систему, соответствующую матрице , т. е. систему вида: (3.3) Вначале рассмотрим соответствующую однородную систему: (3.4) Общее решение этой системы имеет вид: где c, γ – произвольные постоянные интегрирования. Запишем функцию H и применим принцип максимума. где ψ1 , ψ2 определяются системой, сопряжённой к системе (3.3), т. е. системой вида: (3.5) Общее решение этой системы имеет вид: где c’, γ’ – произвольные постоянные интегрирования. Т. е. функция H имеет вид: Подставим в функцию H представление решений x 1 , x 2 : Т. к. собственный вектор матрицы A , соответствующий собственному значению l имеет вид q 1 ─iq 2 , где q 1 =(1;─1/2); q 2 =(0;─). Пусть q 1 и q 2 – базисные векторы новой косоугольной системы координат y 1 , y 2 . Тогда переход от системы y 1 , y 2 к системе x 1 , x 2 выражается формулами: Тогда в новых координатах система уравнений (3.2) запишется в виде или, иначе, в виде где v =(v 1 , v 2 ) ─ управляющая точка, которая может меняться в пределах многогранника V , представляющего собой отрезок [] оси y 2 . Согласно теории вершинам e 1 =(0, ), e 2 =(0, ) многогранника V соответствуют точки h 1 =(1, -), h 2 =(-1, ) (координаты указаны в системе y 1 , y 2 ), а каждый из углов a 1 , a 2 , соответствующих этим вершинам, равен p. Теперь уже нетрудно построить синтез оптимальных управлений в плоскости y 1 , y 2 . Кусками фазовых траекторий будут дуги логарифмических спиралей, т. к. у нас b=1, т. е. b>0 (рис. 18). При переходе от координат y 1 , y 2 к координатам x 1 , x 2 картина синтеза афинно искажается. Список используемой литературы: 1. В.Г. Болтянский. «Математические методы оптимального управления», М.: «Наука», 1968г. 2. Л.С. Понтрягин, В.Г. Болтянский, Р.В. Гамкрелидзе, Е.Ф. Мищенко. «Математическая теория оптимальных процессов», 4-е издательство. М.: «Наука», 1983г. 3. Р. Габасов, Ф.М. Кириллова. «Методы оптимизации», Минск, издательство БГУ, 1981г. |