Реферат: Структура сходящихся последовательностей
Название: Структура сходящихся последовательностей Раздел: Рефераты по математике Тип: реферат |
Последовательность, у которой существует предел, называется сходящейся. Последовательность не являющаяся сходящейся называется расходящейся. Определение: Последовательность {xn } называется сходящейся, если существует такое число а, что последовательность {xn -а} является бесконечно малой. При этом число а называется пределом последовательности {xn }. В соответствии с этим определением всякая бесконечно малая последовательность является сходящейся и имеет своим пределом число ноль. Можно, также, дать еще одно определение сходящейся последовательности: Последовательность {xn } называется сходящейся, если существует такое число а, что для любого положительного числа e можно указать номер N такой, что при n³N все элементы xn этой последовательности удовлетворяют неравенству: |xn -a|<e. Некоторые свойства сходящихся последовательностей: ТЕОРЕМА: Сходящаяся последовательность имеет только один предел. Доказательство: Пусть a и b – пределы сходящейся последовательности {xn }. Тогда, используя специальное представление для элементов xn сходящейся последовательности {xn }, получим xn =а+an , xn =b+bn , где an и bn – элементы бесконечно малых последовательностей {an } и {bn }. Вычитая данные соотношения, найдем an -bn =b-a. Так как все элементы бесконечно малой последовательности {an -bn } имеют одно и то же постоянное значение b-a, то (по теореме: Если все элементы бесконечно малой последовательности {an } равны одному и тому же числу с, то с=0) b-a=0, т.е. b=a. Теорема доказана. ТЕОРЕМА: Сходящаяся последовательность ограничена. Доказательство: Пусть {xn } - сходящаяся последовательность и а – ее предел. Представим ее в следующем виде: xn =а+an ,
Ограниченная последовательность может и не быть сходящейся. Например, последовательность 1, -1, 1, -1, … - ограничена , но не является сходящейся. В самом деле, если бы эта последовательность сходилась к некоторому числу а, то каждая из последовательностей {xn -a} и {xn+1 -a} являлась бы бесконечно малой. Но тогда (по теореме: Разность бесконечно малых последовательностей есть бесконечно малая последовательность.) {(xn -a) – (xn+1 -a)}={xn – xn+1 } была бы бесконечно малой, что невозможно т.к. |xn – xn+1 | = 2 для любого номера n. ТЕОРЕМА: Сумма сходящихся последовательностей {хn } и {yn } есть сходящаяся последовательность, предел которой равен сумме пределов последовательностей {хn } и {yn }. Доказательство: Пусть а и b – соответственно пределы последовательностей {хn } и {yn }. Тогда: xn =а+an , yn =b+bn ,
Таким образом, последовательность {(хn + yn ) - (а + b)} бесконечно малая, и поэтому последователдьность {хn + yn } сходится и имеет своим пределом число а+b. Теорема доказана. ТЕОРЕМА: Разность сходящихся последовательностей {хn } и {yn } есть сходящаяся последовательность, предел которой равен разности пределов последовательностей {хn } и {yn }.
xn =а+an , yn =b+bn ,
Таким образом, последовательность {(хn - yn ) - (а - b)} бесконечно малая, и поэтому последователдьность {хn - yn } сходится и имеет своим пределом число а-b. Теорема доказана. ТЕОРЕМА: Произведение сходящихся последовательностей {хn } и {yn } есть сходящаяся последовательность, предел которой равен произведению пределов последовательностей {хn } и {yn }. Доказательство: Пусть а и b – соответственно пределы последовательностей {хn } и {yn }, то xn =а+an , yn =b+bn и xn ×yn =a×b+a×bn +b×an +an ×bn . Следовательно, xn ×yn -а×b=a×bn +b×an +an ×bn .
ЛЕММА: Если последовательность {yn } сходится и имеет отличный от ноля предел b, то, начиная с некоторого номера, определена последовательность , которая является ограниченной. Доказательство: Пусть . Так как b¹0, то e>0. Пусть N – номер, соответствующий этому e, начиная с которого выполняется неравенство: |yn -b|<e или |yn -b|<
ТЕОРЕМА: Частное двух сходящихся последовательностей {xn } и {yn } при условии, что предел {yn } отличен от ноля, есть сходящаяся последовательность, предел которой равен частному пределов последовательностей {xn } и {yn }. Доказательство: Из доказанной ранее леммы следует, что, начиная с некоторого номера N, элементы последовательности {yn } отличны от ноля и последовательность ограничена. Начиная с этого номера, мы и будем рассматривать последовательность . Пусть а и b – пределы последовательностей {xn } и {yn }. Докажем, что последовательность бесконечно малая. В самом деле, так как xn =а+an , yn =b+bn , то . Итак, теперь можно сказать, что арифметические операции над сходящимися последовательностями приводят к таким же арифметическим операциям над их пределами. ТЕОРЕМА: Если элементы сходящейся последовательности {xn }, начиная с некоторого номера, удовлетворяют неравентству xn ³b (xn £b), то и предел а этой последовательности удовлетворяет неравенству а³b (a£b). Доказательство: Пусть все элементы xn , по крайней мере начиная с некоторого номера, удовлетворяют неравенству xn ³b. Предположим, что а<b. Поскольку а – предел последовательности {xn }, то для положительного e=b-a можно указать номер N такой, что при n³N выполняется неравенство |xn -a|<b-a. Это неравенство эквивалентно -(b-a)<xn -a<b-a Используя правое из этих неравенств мы получим xn <b, а это противоречит условию теоремы. Случай xn £b рассматривается аналогично. Теорема доказана. Элементы сходящейся последовательности {xn } могут удовлетворять строгому неравенству xn >b, однако при этом предел а может оказаться равным b. Например, если xn =1/n, то xn >0, однако . Следствие 1: Если элементы xn и уn у сходящихся последовательностей {xn } и {yn }, начиная с некоторого номера, удовлетворяют неравенству xn £ уn , то их пределы удовлетворяют аналогичному неравенству . Элементы последовательности {yn -xn } неотрицательны, а поэтому неотрицателен и ее предел . Отсюда следует, что . Следствие 2: Если все элементы сходящейся последовательности {xn } находятся на сегменте [a,b], то и ее предел с также находится на этом сегменте. Это выполняется, так как а£xn £b, то a£c£b. ТЕОРЕМА: Пусть {xn } и {zn }- сходящиеся последовательности, имеющие общий предел а. Пусть, кроме того, начиная с некоторого номера, элементы последовательности {yn }удовлетворяют неравенствам xn £yn £zn . Тогда последовательность {yn } сходится и имеет предел а. Доказательство: достаточно доказать, что {yn -a} является бесконечно малой. Обозначим через N’ номер, начиная с которого, выполняются неравенства, указанные в условии теоремы. Тогда, начиная с этого же номера, будут выполнятся также неравенства xn -а £ yn -а £ zn -а. Отсюда следует, что при n³N’ элементы последовательности {yn -a} удовлетворяют неравенству |yn -a| £ max {|xn -a|, |zn -a|}.
Итак, мы показали неравенства, которым удовлетворяют элементы сходящихся последовательностей, в пределе переходят в соответствующие неравенства для пределов этих последовательностей. ПРИМЕРЫ 1. Последовательность сходится и имеет своим пределом ноль. Ведь каково бы ни было e>0, по свойству Архимеда вещественных чисел существует такое натуральное число ne , что ne >. Поэтому для всех n³ne , а это означает, что . 2. Последовательность сходится и , что следует из того, что , и того, что . ЗАДАЧИ ЗАДАЧА № 1 Пусть числовая последовательность а1 , а2 , а3 , … удовлетворяет условию (m, n = 1, 2, 3, … ), тогда последовательность ,… должна либо расходиться к , причем предел этой последовательности будет равен ее нижней грани. РЕШЕНИЕ: Видим частный случай теоремы у M. Fekete. Достаточно рассмотреть случай, когда нижняя грань a конечна. Пусть e>0 и a+e. Всякое целое число n может быть представлено в форме n=qm+r, где r=0 или 1, или 2, …, или m-1. Полагая единообразие а0 =0, имеем: an =aqm+r £am +am +…+am +ar =qam +ar , , ЗАДАЧА № 2 Пусть числовая последовательность а1 , а2 , а3 , … удовлетворяет условию тогда существует конечный предел , причем (n = 1, 2, 3, … ). РЕШЕНИЕ: Из неравенств 2am -1<a2m <2am +1 получаем: (*) Ряд сходится, ибо в силу неравенства (*) он мажорируется сходящимся рядом: |a1 |+2-1 +2-2 +2-3 +… запишем целое число n по двоичной системе: n=2m +e1 2m-1 +e2 2m-2 +…+em (e1 , e2 , …, em = 0 или 1) согласно предположению . Применяя теорему (1) для данных: s0 =0, s1 =, sm-1 =, sm =, …, pn0 =0, pn1 =, …, pn, m-1 =, , pn, m+1 =0, …, заключаем, что . Наконец, в силу (*) имеем: . ЗАДАЧА № 3 Если общий член ряда, не являющегося ни сходящимся, ни расходящимся в собственном смысле, стремится к нулю, то частичные суммы этого ряда расположены всюду плотно между их нижним и верхним пределами lim inf и lim sup. РЕШЕНИЕ: Нам достаточно рассмотреть случай, когда частичные суммы s1 , s2 , …, sn , … ограничены. Пусть , , l - целое положительное число, l>2 и . Разобьем числовую прямую на l интервалов точками -¥, m+d, m+2d, …, M-2d, M-d, +¥. Выберем такое N, чтобы для n>N выполнялось неравенство |sn -sn+1 |<d. Пусть, далее, sn1 (n1 >N) лежит в первом интервале и sn2 (n2 > n1 ) – в последнем. Тогда числа конечной последовательности не смогут “перепрыгнуть” ни один из l-2 промежуточных интервалов длиной d. Аналогично рассуждаем и в том случае, когда последовательность будет не «медленно восходящей», а «медленно нисхожящей». ЗАДАЧА № 4 Пусть для последовательности t1 , t2 , … , tn , … существует такая последовательность стремящихся к нулю положительных чисел …, что для каждого n . РЕШЕНИЕ: Существуют в сколь угодно большом удалении конечные последовательности , произвольно медленно нисходящие от верхнего предела последовательности к ее нижнему пределу. ЗАДАЧА № 5 Пусть v1 , v2 , … , vn , … - положительные числа, v1 £ v2 £ v3 … Совокупность предельных точек последовательности , … заполняет замкнутый интервал (длина которого равна нулю, если эта последовательность стремится к пределу). РЕШЕНИЕ: ЗАДАЧА № 6 Числовая последовательность, стремящаяся к , имеет наименьший член. РЕШЕНИЕ: Какое бы число мы ни задали, слева от него будет находиться лишь конечное число членов последовательности, а среди конечного множества чисел существует одно или несколько наименьших. ЗАДАЧА № 7 Сходящаяся последовательность имеет либо наибольший член, либо наименьший, либо и тот и другой. РЕШЕНИЕ: При совпадении верхней и нижней граней рассматриваемой последовательности теорема тривиальна. Пусть поэтому они различны. Тогда по крайней мере одна из них отличается от предела последовательности. Она и будет равна наибольшему, соответственно наименьшему, члену последовательности. ЗАДАЧА № 8 Пусть l1 , l2 , l3 , … , lm , … - последовательность положительных чисел и , тогда существует бесконечно много номеров n, для которых ln меньше всех предшествующих ему членов последовательности l1 , l2 , l3 , … , ln-1 . РЕШЕНИЕ: Пусть задано целое положительное число m и h – наименьшее из чисел l1 , l2 , l3 , … , lm ; h>0. Согласно предположению в рассматриваемой последовательности существуют члены, меньше чем h. Пусть n – наименьший номер, для которого ln <h. Тогда: n>m; ln <l1 , ln <l2 , …, ln <ln-1 . ЗАДАЧА № 9 Пусть l1 , l2 , l3 , … , lm , … - последовательность положительных чисел и , тогда существует бесконечно много номеров n, для которых ln превосходит все следующие за ним члены ln+1 , ln+2 , ln+3 ,… ЗАДАЧА № 10 Пусть числовые последовательности l1 , l2 , l3 , … , lm , … (lm >0), s1 , s 2 , s 3 , … , s m , … (s1 >0, sm+1 >sm , m=1, 2, 3, …) обладают тем свойством, что , . Тогда существует бесконечно много номеров n, для которых одновременно выполняются неравенства ln >ln+1 , ln >ln+2 , ln >ln+3 , … ln sn >ln-1 sn-1, ln sn >ln-2 sn-2, … ln sn >l1 s1, РЕШЕНИЕ: Будем называть lm «выступающим» членом последовательности, если lm больше всех последующих членов. Согласно предположению в первой последовательности содержится бесконечно много выступающих членов; пусть это будут: ,… Каждый невыступающий член lv заключается (для v>n1 ) между двумя последовательными выступающими членами, скажем nr-1 <v<nr . Имеем последовательно: , значит (*) отсюда заключаем, что Действительно, в противном случае , значит, в силу (*) и вся последовательность k>m; . ЗАДАЧА № 11 Если числовая последовательность ,… стремится к и А превышает ее наименьший член, то существует такой номер n (возможно несколько таких), n³1, что n отношений
,… РЕШЕНИЕ: Имеем . Пусть минимум последовательности L0 -0, L1 -A, L2 -2A, L3 -3A, … Будет Ln -nA; тогда Ln-u -(n-u)A³ Ln -nA; Ln+v -(n+v)A³ Ln -nA, u=1, 2, …, n; v=1, 2, 3, …; n=0 исключено в силу предложений относительно А. ЗАДАЧА № 12 Пусть относительно числовой последовательности l1 , l2 , l3 , … , lm , … предполагается лишь, что . . РЕШЕНИЕ: Пусть l1 +l2 +l3 +…+lm =Lm , m=1, 2, 3, …; L0 =0. Так как L1 -A<0, то L0 -0 не является минимумом в предыдущем решении. ln+1 ³A; поэтому ln+1, а следовательно и n должны стремиться к бесконечности одновременно с А. ЗАДАЧА № 13 Пусть числовая последовательность l1 , l2 , l3 , … , lm , … удовлетворяет условиям ,
. РЕШЕНИЕ: Положим l1 +l2 +l3 +…+lm =Lm , m=1, 2, 3, …; L0 =0. Тогда . Последовательность L0 -0, L1 -A, L2 -2A, L3 -3A, …, Lm -mA, … стремится к -¥. Пусть ее наибольший член будет Ln -nA. Тогда интересующие нас неравенства будут выполняться для этого номера n. В последовательности L0 , L1 , …, Lm , … содержится бесконечно много членов, превышающих все предыдущие. Пусть Ls будет один из них. Тогда числа: все положительны: коль скоро А меньше наименьшего из них, соответствующий А номер n больше или равен s. Точки (n, Ln ) должны быть обтянуты теперь бесконечным выпуклым сверху полигоном. |