Реферат: Задачи по статистике
Название: Задачи по статистике Раздел: Рефераты по статистике Тип: реферат | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ КАФЕДРА СТАТИСТИКИ КУРСОВАЯ РАБОТАпо статистике Вариант 2 Выполнил: Кончаков Е.А.____ 3 курс, 310 гр.____________ Проверила: Каманина А.М._ г. Москва, 2001 г. Задача №1. Имеются следующие выборочные данные (выборка 10%-ная, механическая) по предприятиям одной из отраслей промышленности:
По исходным данным:
Сделайте выводы.
Статистическая группировка в зависимости от решаемых задач подразделяются на типологические, структурные аналитические. Статистическая группировка позволяет дать характеристику размеров, структуры и взаимосвязи изучаемых явлений, выявить их закономерности. Важным направлением в статистической сводке является построение рядов распределения, одно из назначений которых состоит в изучении структуры исследуемой совокупности, характера и закономерности распределения. Ряд распределения – это простейшая группировка, представляющая собой распределение численности единиц совокупности по значению какого-либо признака. Ряды распределения, в основе которых лежит качественный признак, называют атрибутивным. Если ряд построен по количественному признаку, его называют вариационным. При построении вариационного ряда с равными интервалами определяют его число групп () и величину интервала (). Оптимальное число групп может быть определено по формуле Стерджесса: , (1) где- число единиц совокупности. Величина равного интервала рассчитывается по формуле: (2) где – число выделенных интервалов. Средняя – является обещающей характеристикой совокупности единиц по качественно однородному признаку. В статистике применяются различные виды средних: арифметическая, гармоническая, квадратическая, геометрическая и структурные средние – мода и медиана. Средние, кроме моды и медианы, исчисляются в двух формах: простой и взвешенной. Выбор формы средней зависит от исходных данных и содержание определяемого показателя. Наибольшее распространение получила средняя арифметическая, как простая, так и взвешенная. Средняя арифметическая простая равна сумме значений признака, деленной на их число: , (3) где – значение признака (вариант); –число единиц признака. Средняя арифметическая простая применяется в тех случаях, когда варианты представлены индивидуально в виде их перечня в любом порядке или в виде ранжированного ряда. Если данные представлены в виде дискретных или интервальных рядов распределения, в которых одинаковые значения признака () объединены в группы, имеющие различное число единиц (), называемое частотой (весом), применяется средняя арифметическая взвешенная: (4)
Для измерения степени колеблемости отдельных значений признака от средней исчисляются основные обобщающие показатели вариации: дисперсия, среднее квадратическое отклонение и коэффициент вариации. Дисперсия () – это средняя арифметическая квадратов отклонений отдельных значений признака от их средней арифметической. В зависимости от исходных данных дисперсия вычисляется по формуле средней арифметической простой или взвешенной: - невзвешенния (простая); (5) - взвешенная. (6) Среднее квадратическое отклонение () представляет собой корень квадратный из дисперсии и рано: - невзвешенния; (7) - взвешенная. (8)
В отличие от дисперсии среднее квадратическое отклонение является абсолютной мерой вариации признака в совокупности и выражается в единицах измерения варьирующего признака (рублях, тоннах, процентах и т.д.). Для сравнения размеров вариации различных признаков, а также для сравнения степени вариации одноименных признаков в нескольких совокупностях исчисляется относительный показатель вариации – коэффициент вариации (), который представляет собой процентное отношение среднего квадратического отклонения и средней арифметической: (9)
По величине коэффициента вариации можно судить о степени вариации признаков, а, следовательно, об однородности состава совокупности. Чем больше его величина, тем больше разброс значений признака вокруг средней, тем менее однородна совокупность по составу. При механическом отборе предельная ошибка выборки определяется по формуле: (10)
Решение: 1. Сначала определим длину интервала по формуле (2): 19,0-50,8; 50,8-82,6; 82,6-114,4; 114,4-146,2; 146,2-178,0
2. Рассчитываем характеристику ряда распределения предприятий по выпуску продукции.
Среднеквадратическое отклонение:
Коэффициент вариации:
Выводы.
3. Определяем ошибку выборки. С вероятностью 0,954 можно сказать, что средний выпуск продукции в генеральной совокупности находится в пределах от 76,797 млн. руб. до 105,749 млн. руб. Задача №2. По данным задачи 1:
Сделайте выводы.
Аналитическая группировка позволяет изучать взаимосвязь факторного и результативно признаков. Основные этапы проведения аналитической группировки – обоснование и выбор факторного и результативного признаков, подсчет числа единиц в каждой из образованных групп, определение объема варьирующих признаков в пределах созданных групп, а также исчисление средних размеров результативного показателя. Результаты группировки оформляют в таблице. Коэффициент детерминации равен отношению межгрупповой дисперсии к общей: (11) и показывает долю общей вариации результативного признака, обусловленную вариацией группировочного признака. Корень квадратный из коэффициента детерминации называется эмпирическим корреляционным отношением: (12)
По абсолютной величине он может меняться от 0 до 1. Если , группировочный признак не оказывает влияния на результативный. Если , изменение результативного признака полностью обусловлено группировочным признаком, т.е. между ними существует функциональная связь.
Решение : 1. Интервал (по формуле (2) ): где – число выделенных интервалов. 100-220; 220-340; 340-460; 460-580; 580-700
Строим рабочую таблицу распределения предприятий по численности персонала:
Теперь по данным рабочей таблицы строим итоговую аналитическую таблицу:
По данным аналитической таблицы мы видим, что с приростом объема продукции, средняя численность персонала на одно предприятие возрастает. Значит, между исследуемыми признаками существует прямая корреляционная зависимость. 2. Строим расчетную таблицу:
Вычисляем коэффициент детерминации по формуле:
где - межгрупповая дисперсия, находящаяся по формуле: - общая дисперсия результативного признака, находящаяся по формуле: Теперь находим Для каждой группы предприятий рассчитаем значение и внесем в таблицу. Находим межгрупповую дисперсию: Для нахождения общей дисперсии, нужно рассчитать : Вычисляем коэффициент детерминации: Коэффициент детерминации показывает, что выпуск продукции на 88,9% зависит от численности персонала и на 11,1% от неучтенных факторов. Эмпирическое корреляционное отношение составляет (по формуле (12) ):
Это говорит о том, что связь между факторным и результативным признаками очень тесная, т.е. это свидетельствует о существенном влиянии на выпуск продукции численности персонала. Задача №3. Имеются следующие данные по двум предприятиям отрасли :
Определите : 1. Уровни и динамику производительности труда рабочих каждого предприятия. 2. Для двух предприятий вместе : (a) индекс производительности труда переменного состава; (b) индекс производительности труда фиксированного состава; (c) индекс влияния структурных изменений в численности рабочих на динамику средней производительности труда; (d) абсолютное и относительное изменение объема реализации продукции во 2 квартале (на одном из предприятий) в результате изменения : 1) численности рабочих; 2) уровня производительности труда; 3) двух факторов вместе. Покажите взаимосвязь между исчисленными показателями. · C одержание и краткое описание применяемых методов: Индексы – обещающие показатели сравнения во времени и в пространстве не только однотипных (одноименных) явлений, но и совокупностей, состоящих из несоизмеримых элементов. Будучи сводной характеристикой качественного показателя, средняя величина складывается как под влиянием значений показателя у индивидуальных элементов (единиц), из которых состоит объект, так и под влиянием соотношения их весов («структуры» объекта). Если любой качественный индексируемый показатель обозначить через x, а его веса – через f , то динамику среднего показателя можно отразить за счет изменения обоих факторов (x и f ), так за счет каждого фактора отдельно. В результате получим три различных индекса: индекс переменного состава, индекс фиксированного состава и индекс структурных сдвигов. Индекс переменного состава отражает динамику среднего показателя (для однородной совокупности) за счет изменения индексируемой величины x у отдельных элементов (частей целого) и за счет изменения весов f , по которым взвешиваются отдельные значения x. Любой индекс переменного состава – это отношение двух средних величин для однородной совокупности (за два периода или по двум территориям): (13) Величина этого индекса характеризует изменение средневзвешенной средней за счет влияния двух факторов: осредняемого показателя у отдельных единиц совокупности и структуры изучаемой совокупности. Индекс фиксированного состава отражает динамику среднего показателя лишь за счет изменения индексируемой величины x , при фиксировании весов на уровне, как правило, отчетного периода : (14)
Другими словами, индекс фиксированного состава исключает влияние изменения структуры (состава) совокупности на динамику средних величин, рассчитанных для двух периодов при одной и той же фиксированной структуре. Индекс структурных сдвигов характеризует влияние изменения структуры изучаемого явления на динамику среднего уровня индексируемого показателя и рассчитывается по формуле: (15)
В индексах средних уровней в качестве весов могут быть взяты удельные веса единиц совокупности (), которые отражают изменения в структуре изучаемой совокупности. Тогда систему взаимосвязанных индексов можно записать в следующем виде: (16)
или индекс индекс индекс переменного = постоянного x структурных . состава состава сдвигов
Решение: 1. Построим расчетную таблицу, где реализованную продукцию в первом квартале обозначим V0 , а во втором как V1 и среднесписочную численность как S0 и S1 .
2. (а) Для расчета индекса производительности труда переменного состава используем следующую формулу : получаем: I пс =6,08 : 4,95=1,22 Индекс показывает изменение среднего уровня производительности труда в однородной совокупности под влиянием двух факторов : 1) изменение качественного показателя W (производительности труда) у отдельных предприятий; 2) изменение доли, с которой каждое значение W входит в общий объем совокупности. (b) Для расчета индекса производительности труда фиксированного состава используем следующую формулу : получаем : Индекс показывает изменение среднего уровня только под влиянием изменения индивидуальных значений качественного показателя в постоянной структуре. (c) Для расчета индекса влияния структурных изменений в численности рабочих на динамику средней производительности труда используем следующую формулу : получаем : I стр =4,86 : 4,95 = 0,98 Рассчитанные выше показатели взаимосвязаны между собой количественно, это определяется формулой : получаем : I пс =6,08 : 4,95=1,22 (d) Произошедшее абсолютное и относительное изменение объема продукции во 2-м квартале зависело от следующих факторов : - численность рабочих : D q ( S ) = ( S 1 - S 0 ) W 0 получаем : D q ( S ) = (80 – 100) * 5,4 = -108 - уровень производительности труда : D q ( W ) = ( W 1 - W 0 ) S 1 получаем : D q ( W ) = (6,8 – 5,4) * 80 = 112 - обоих факторов вместе : D q = D q ( S ) + D q ( W ) получаем : D q = -108 + 112 =4 Вывод: Поскольку индекс производительности труда переменного состава равен 1,22 или 122%, значит, средняя производительность труда по двум предприятиям возросла на 22%. Индекс производительности труда фиксированного состава равен 1,25 или 125%, значит, средняя производительность труда по двум предприятиям возросла на 25%. Индекс структурных сдвигов равен 0,98 или 98%, значит, средняя производительность труда по двум предприятиям снизилась на 2% за счет изменения структуры. При условии, что произошедшие изменения производительности труда не сопровождались бы структурными перераспределениями среднесписочной численности рабочих в 1-м и 2-м квартале, то средняя производительность труда по двум предприятиям возросла бы на 25%. Изменение численности рабочих привело к снижению производительности труда на 2%. Но одновременное воздействие двух факторов увеличило среднюю производительность труда по двум предприятиям на 22%. Задача №4. Предприятие в отчетном полугодии реализовало продукции на 900 тыс. руб., что на 25% меньше, чем в базисном. Запасы же готовой продукции на складе, напротив, возросли на 10% и составили 60 тыс. руб. Определите все возможные показатели оборачиваемости оборотных средств, вложенных в запасы готовой продукции, за каждое полугодие, замедление их оборачиваемости в днях, дополнительное оседание (закрепление) готовой продукции на складе в результате замедления оборачиваемости ее запасов. Решение : Реализация продукции: В базисном периоде: В отчетном периоде: Запасы готовой продукции: В базисном периоде: В отчетном периоде: Коэффициент оборачиваемости: В базисном периоде: В отчетном периоде: Продолжительность одного оборота: В базисном периоде: В отчетном периоде: Коэффициент закрепления: В базисном периоде: В отчетном периоде: т.р. Задача №5. Покупатель предложил продавцу расплатиться за товар стоимостью 1,2 млн. руб. портфелем из четырех одинаковых векселей, который банк согласен учесть в день заключения сделки купли-продажи под 36% годовых. Учитывая, что срок погашения вексельного портфеля наступает через 4 месяца, определите: а) выгодна ли сделка для продавца, если весельная сумма каждой бумаги составляет 333 т.р. б) каков должен быть удовлетворяющий продавца товара номинал каждого векселя в случае, если сделка на прежних условиях оказалась не выгодной для него. Решение :
=333 т.р. номинал векселя; = та сумма, которую получит владелец товара; =0,36 учетная ставка процента; =4 период времени; ; т.р. т.р. т.о. сделка не выгодна. Определим выгодный для продавца номинал векселя: т.р.; т.р.; т.р. т.р. Список используемой литературы:
|