Реферат: Курсовая работа
Название: Курсовая работа Раздел: Рефераты по статистике Тип: реферат | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Лабораторная работа № 1. Тема: «Сводка, группировка, статистические таблицы». Цель : выявление обобщающих закономерностей, характерных для изучаемой совокупности объектов наблюдения как целостной системы. Цель исследования—определение уровня успеваемости студентов 1-ого курса, а так же факторов на него влияющих. В качестве исследуемых признаков я рассматриваю: 1. средний балл по итогам экзаменов за 1-ый курс (баллы). 2. посещаемость занятий в университете на 1-ом курсе. 3. самообразование (дополнительное обучение, курсы) (ч/нед). 4. сон (ч/сутки). 5. пол (м, ж). 6. подготовка к семинарским и практическим занятиям (ч/нед). 7. нравятся ли студенту на 1-ом курсе занятия в университете (да, нет). Из представленных признаков я выделяю признак-результат—средний балл зачётки по итогам 1-ого курса, так как его значение отвечает цели исследования. Остальные шесть признаков являются признаками-факторами, т. к. они оказывают влияние на признак-результат. Наблюдение единовременное ауд. 722, 522 СПбГИЭУ. Дата проведения: 03.11.2000г. по форме проведения—опрос. Объектом наблюдения являются 2 группы студентов (1093 и 1094) 2-ого курса. единица наблюдения—студент. Исследование основного массива. Таблицы с исходными данными. Таблица 1
Структурные группировки. 1 группировка. Таблица 2
Для удобства разбиваем вариационный ряд на 4 равных интервала. Величину интервала определяем по формуле: h = R / n = (X max – X min) / n = (5-3) / 4 = 0,5 гистограмма: кумулята:
считаем по несгруппированным данным для большей точности: Х = (4,7 + 4,5 + 4,2 + 4,2 +4,5 + 4,2 + 4,0 + 4,7 + 4,6 + 4,7 + 3,5 + 4,0 + 3,2 + 4,0 + 3,2 + 3,5 + + 4,8 + 4,6 + 4,5 + 4,5 + 4,2 + 4,5 + 4,2 + 4,8 + 4,0 + 4,2 + 3,0 + 3,2 + 4,8 + 4,8 + 4,3 + 4,5 + 4,7 + 4,2 + 4,6 + 3,0 + 3,0 + 4,0 + 4,7 + 3,5 + 4,7 + 4,5 + 3,2 + 4,5 + 4,8 + 3,2 + 3,0 + 4,5 + 4,7) / 50 = 4,27 (балла) Ме = x0 + в Ме (N/2 – F(x0 ) / NMe Me = 4+ 0,5 (25 –12) / 15 = 4,4 (балла) Мо = х0 + в Мо (NМо – NМо-1 ) / (NМо – NМо-1 ) + (NМо – NМо+1 ) Mo = 4,5 + 0,5 (25-15) / ((23-15) + (23-0)) = 4,6 (балла) D = å (xi – x)2 / n считаем по несгруппированным данным. D = 0,3 (кв. балла) bx = ÖD bx = Ö0,3 = 0,55 (балла) V = bx / x × 100% V = (0,55 / 4,27) × 100% = 128% R = xmax – xmin R = 5 – 3 = 2 (балла) Вывод: средний балл зачётки по итогам экзаменов за 1-ый курс для данной совокупности составляет 4,27 балла. Т. к. коэффициент вариации является величиной незначительной (128%), можно предполагать, что такой средний балл является типичным для данной совокупности. Наиболее распространённым является балл зачётки 4,6 балла. Средний балл у 50% студентов не больше 4,4 балла. Группировка 2 Таблица 3
Разбиение на интервалы аналогично группировке 1. Для несгруппированных данных, значит более точный результат. Х = å xi / n X = 16, 13 (ч/нед) Ме = x0 + в Ме (N/2 – F(x0 ) / NMe Ме = 14 + 4 (25 – 17) / 15 = 17,3 (ч/нед) D = å (xi – x)2 / n D = 19,4 ((ч/нед)2 ) bx = ÖD = 4,4 (ч/нед) V = bx / x × 100% = (4,4 / 16,13) × 100% = 27,2% R = xmax – xmin R = 22 – 16 = 16 (балла) Вывод: средняя посещаемость в группах составляет 16,13 ч/нед (70% от часов в неделю назначенных расписанием). Коэффициент вариации является величиной незначительной (28,6%), следовательно. Такая средняя посещаемость типична для студентов данной совокупности. Большинство студентов посещало 17,3 ч/нед. Посещаемость занятий у 50% студентов меньше 19 ч/нед, у 50% больше 19 ч/нед. Группировка 3 Таблица 4
Полегон частот: кумулята Х = å xi ji / å ji = (0 × 25 + 2 × 8 + 3 × 2 + 4 × 6 + 5 × 2 + 6 × 7) / 50 = 1,96 (ч/нед) NMe = (n+1) / 2 = 51 / 2 = 25,5 Me = x NMe ; Me = 2 (ч/нед) ; Мо = 0 (ч/нед) D = å (xi – x)2 ji / å jI = ((0 – 1,96)2 × 25 + (2 – 1,96)2 × 8 + (3 – 1,96)2 × 2 + (4 – 1,96)2 × 6 + (5 – 1,96)2 × 2 + (6 – 1,96)2 × 7) / 50 = 5,1 (ч/нед)2 bx = 2,26 (ч/нед) V = (2,26 / 1,96) × 100% = 115% R = 6 – 0 = 6 (ч/нед) Вывод: среднее количество часов, затраченное студентами на самообразование 1,96 ч/нед. Т. к. коэффициент вариации является величиной значительной (115%), то среднее количество является не типичным для данной совокупности. Наиболее распространённым является количество часов самообразования равное 0 ч/нед. Ровно половина из 50 опрошенных студентов не занимались на первом курсе дополнительным самообразованием. Группировка 4 Таблица 5
Для удобства разбиваем вариационный ряд на 4 равных интервала. Величину интервала определяем по формуле: h = R / n. h = 3. Х = å xi / n Х = 4,08 (ч/нед) Ме = 3 + 3 (25 – 21) / 18 = 3,6 (ч/нед) Мо = 0 + 3 (21 – 0) / ((21 – 0) + (21 – 8)) = 1,85 (ч/нед) D = å (xi – x)2 / n D = 7,2 ((ч/нед)2 ) bx = 2,7 (ч/нед) V = (2,7 / 4,08) × 100% = 65,6% R = 12 – 0 = 12 (ч/нед) Вывод: среднее время, затраченное на подготовку к семинарским занятиям у студентов на 1 курсе 4,08 ч/нед. Т. к. коэффициент вариации является величиной значительной, то среднее время подготовки является величиной не типичной для данной совокупности студентов. Наиболее распространённым количеством часов на подготовку равно 1,85 ч/нед. Число студентов, занимающихся больше 3,6 ч/нед равно числу студентов, занимающихся подготовкой к занятиям больше 3,6 ч/нед. Группировка 5 Таблица 6
X = (5 6 + 6 3 + 7 13 + 8 11 + 9 8 + 10 9) / 50 = 7,78 (ч/сут) NMe = (n+1) / 2 Me = 8 (ч/сут) Мо = 7 (ч/сут) D = å (xi – x)2 ji / å jI D = 2,4 ((ч/сут)2 ) bx = 1,55 (ч/сут) V = (1,55 / 7,78) × 100% = 19,9% R = 10 – 5 = 5 (ч/сут) Вывод: среднее значение часов сна 7,78 ч/сутки. Т. к. коэффициент вариации является величиной незначительной (19,9%), то такое среднее значение часов сна является типичным для данной совокупности. Наиболее распространённым является количество часов сна 7 ч/сутки. Количество студентов, которые спят больше 8 ч/сутки равно количеству студентов, спящих меньше 8 ч/сут. Группировка 6 Таблица 7
Вывод: из таблицы видно, что большинство опрошенных студентов женского пола. Группировка 7 Таблица 8
Вывод: из таблицы видно, что большинству студентов данной совокупности нравились занятия на 1 курсе в академии. Комбинационные группировки. Таблица 9
Вывод: из таблицы видно, что наиболее крупные элементы расположены близко к побочной диагонали. Следовательно, зависимость между признаками близка к обратной. Таблица 10
Вывод: из таблицы видно, что наибольшие элементы расположены близко к главной диагонали. Следовательно, зависимость между признаками близка к прямой. Аналитические группировки. Группировка 1 Таблица 11 Введём обозначения: 1. неудовлетворительная подготовка к занятиям [0-3] 2. удовлетворительная [3-6] 3. хорошая [6-9] 4. отличная [9-12]
Вывод: из таблицы видно, что зависимость между фактором и признаком существует. Группировка 2 Таблица 12 Введём обозначения: 1. 1/3 всех занятий [6-12] ч/нед 2. половина [12-18] ч/нед 3. все занятия [18-22] ч/нед
Вывод: из таблицы видно, что зависимости между признаком-фактором и признаком-результатом явной нет. Группировка 3 Таблица 13
Вывод: не наблюдается явной зависимости между признаком-фактором и признаком результатом. Лабораторная работа № 2 Тема : Корреляционный анализ, множественная линейная регрессия. Цель: выбор оптимальной модели многофакторной регрессии на основе анализа различных моделей и расчитан для них коэффициентов множественной детерминации и среднеквадратических ошибок уравнения многофакторной регрессии. Корреляционная матрица Таблица 1
Где х0 – средний балл зачётки (результат), х1 – посещаемость занятий, х2 – самообразование (доп. курсы), х3 – подготовка к семинарским занятиям, х4 – сон. Введём обозначения признаков-факторов: 1 – посещаемость занятий на 1 курсе (ч/нед); 2 – самообразование (ч/нед); 3 – подготовка к семинарским и практическим занятиям (ч/нед); 4 – сон (ч/сут); 0 – средний балл зачётки по итогам экзаменов за 1 курс. Расчётная таблица для моделей многофакторной регрессии. Таблица 2
По трём критериям выбираем оптимальную модель. 1. число факторов минимально (2) 2. max R, R = 0,36 3. min E, E = 0,46 Следовательно, оптимальной моделью является модель 1-3. Значит, признаки-факторы «посещаемость занятий на 1 курсе» и «подготовка к семинарским занятиям» влияют значительнее других факторов на признак-результат. Среднеквадратическая ошибка уравнения многофакторной регрессии небольшая по сравнению с ошибками, рассчитанными для других моделей многофакторной регрессии. Составляю для этой модели уравнение регрессии в естественных масштабах. Х0/1,3 = a + b1 x1 + b3 x3 Корреляционная матрица. Таблица 3
t0/1,3 = b1 t1 + b3 t3 0,57 = b1 + 0,47b3 0,57 = b1 + 0,47(0,44 – 0,47b1 ) b1 = 0,4 0,44 = 0,47b1 + b3 b3 = 0,44 – 0,47b1 b3 = 0,25 t0/1,3 = 0,4t1 + 0,25t3 b1 = (d0 / dx1 ) b1 = (0,47 / 4,4) 0,4 = 0,071 b3 = (d0 / dx3 ) b3 = (0,79 / 2,68) 0,25 = 0,073 a = x0 – b1 x1 – b3 x3 = 4,27 – 0,071 × 16,13 – 0,073 × 4,08 = 2,8 имеем: х0/1,3 =2,8 + 0,071х1 + 0,073х3 – уравнение линейной множественной регрессии. R0/1,3 = Öb1 r01 + b3 r03 R0/1,3 = Ö0,4 × 0,58 + 0,25 × 0,48 = 0,6 Вывод: коэффициент b1 говорит о том, что признак-результат—средний балл зачётки за 1 курс на 0,4 долю от своего среднеквадратического отклонения (0,4 × 0,79 = 0,316 балла) при изменении признака-фактора—посещаемости на 1 курсе на одно своё СКО (4,4 ч/нед). b3 – средний балл зачётки изменится на 0,25 долю от своего СКО (0,25 0,79 = 0,179 балла) при увеличении признака-фактора—подготовки к семинарским занятиям на одно своё СКО (2,68 ч/сут). Т. к. b1 < b3 , следовательно фактор 1—посещаемость занятий влияет на средний балл зачётки больше, чем фактор 3—подготовка к занятиям. R2 говорит о том, что 36% общей вариации значений среднего балла зачётки на 1 курсе вызвано влиянием посещаемости и подготовки к занятиям. Остальные 60% вызваны прочими факторами. R = 0,58 свидетельствует о том, что между посещаемостью занятий и подготовкой к ним и средним баллом зачётки существует заметная линейная зависимость. Коэффициент b1 говорит о том, что если посещаемость занятий увеличится на 1 ч/нед, то средний балл зачётки увеличится в среднем на 0,071 балла, при условии неизменности всех остальных факторов. b2 говорит о том, что если подготовка к занятиям увеличится на 1 ч/нед, то средний балл зачётки в среднем увеличится на 0,073 балла. b1 = 0,4 b3 = 0,25 r01 = 0,52 r03 = 0,44 r13 = 0,47 Граф связи признаков-факторов: х2 – подготовки к семинарским занятиям, ч/нед; х1 - посещаемости занятий, ч/нед с признаком-результатом х0 – средним баллом зачётки по итогам экзаменов за 1 курс. b1 – мера непосредственного влияния на признак-результат посещаемости занятий. b3 – мера непосредственного влияния подготовки к занятиям на средний балл зачётки. r01 = b1 + r13 b3 , где r01 – общее влияние х1 на r13 b3 – мера опосредованного влияния х1 через х3 на х0. r01 = 0,4 + 0,47 × 0,25 = 0,52 r03 = b3 + r31 b1 , где r03 – общее влияние х3 на r31 b1 – мера опосредованного влияния х3 через х1 на х0. Лабораторная работа № 3. Тема: «Дисперсионное отношение. Эмпирическая и аналитическая регрессии.» Цель: выявление зависимости между признаками-факторами и признаком-результатом. Таблица с исходными данными. Таблица 1
Рассматриваю первую пару признаков: признак-фактор—посещаемость занятий на 1 курсе (ч/нед) и признак-результат—средний балл зачётки по итогам экзаменов за 1 курс (баллы). Далее обосную взаимосвязь между ними. Расчётная таблица №1 Таблица 2
d2 y = (å(yi –y)2 jI ) d 2 y = 8,96 / 50 = 0,1792 (балла)2 E2 y= (åб2 yi jI ) / åjI E2 y = (4,5 + 1,12 + 15,3 + 1,62) / 50 = 0,4508(балла)2 б2 y = E2 y + в 2 y = 0,4508 + 0,1792 = 0,63 (балла)2 r2 = в 2 y / б2 y = 0,1792 / 0,63 = 0,28 (0,28%) построение аналитической регрессии. yx = a + bx xy = (åxyjI ) / åjI = 62,52 б2 x = 19,4 (ч/нед)2 b = (xy – x y) / б2 x = (62,52 – 15,3 × 4,0) / 19,4 = 0,068 a = y – bx = 4,0 – 0,068 × 15,3 = 2,96 Линейное уравнение регрессии зависимости среднего балла зачётки за 1 курс от посещаемости: строим по двум точкам yx = 2,96 + 0,068х
rxy = (xy – x y) / бx бy = 0,37 Корреляционное поле Эмпирическая линия регрессии Аналитическая линия регрессии Распределение среднего балла зачётки за 1 курс по признаку-фактору—посещаемости занятий на 1 курсе. Вывод: r2 свидетельствует о том, что 28% общей вариации результативного признака вызвано влиянием признака фактора—посещаемостью. Остальные 72% - вызваны влиянием прочих факторов. Можно сказать, что это слабая корреляционная зависимость. Интерпретируя параметр b, предполагаем, что для данной совокупности студентов с увеличением посещаемости занятий на 1 курсе на 1 ч/нед средний балл зачётки увеличивается на 0,068 балла. rxy говорит о том, что между признаком-результатом и признаком-фактором заметная линейная связь. Рассматриваю вторую пару признаков: Расчётная таблица № 2. Таблица 3
d2 y = (å(yi –y)2 jI ) d 2 y = 4,9 / 50 = 0,098 (балла)2 E2 y= (åб2 yi jI ) / åjI E2 y = 12,33 / 50 = 0,25 (балла)2 б2 y = E2 y + в 2 y = 0,35 (балла)2 r2 = в 2 y / б2 y = 0,098 / 0,35 = 0,28 (0,28%) r = 0,53 построение аналитической регрессии. yx = a + bx xy = (åxyjI ) / åjI xy = 15,2 б2 x = 7,2 (ч/нед)2 b = (xy – x y) / б2 x = (15,2 – 3,5 × 4,0) / 7,2 = 0,16 a = y – bx = 4,0 – 0,16 × 3,4 Линейное уравнение регрессии зависимости среднего балла зачётки за 1 курс от подготовки к семинарским занятиям: yx = 2,96 + 0,068х x = 0 y = 3,4 x = 7 y = 4,5 rxy = (xy – x y) / бx бy = (15,2 – 14) / 2,6 = 0,46 Корреляционное поле Эмпирическая линия регрессии Аналитическая линия регрессии Распределение среднего балла зачётки за 1 курс по признаку-фактору—подготовке к семинарским занятиям. Вывод: r2 свидетельствует о том, что 28% общей вариации результативного признака вызвано влиянием признака фактора—подготовкой к семинарским занятиям. Остальные 72% - вызваны влиянием прочих факторов. Можно сказать, что это слабая корреляционная зависимость. Интерпретируя параметр b, предполагаем, что для данной совокупности студентов с увеличением подготовки к занятиям на 1 курсе на 1 ч/нед средний балл зачётки увеличивается на 0,16 балла. rxy говорит о том, что между признаком-результатом и признаком-фактором есть умеренная линейная связь. Рассматриваю третью пару признаков: Расчётная таблица № 3 Таблица 4
d2 y = (å(yi –y)2 jI ) d 2 y = 2,34 / 50 = 0,046 (балла)2 E2 y= (åб2 yi jI ) / åjI E2 y = 15,88 / 50 = 0,31 (балла)2 б2 y = E2 y + в 2 y = 0,31 + 0,046 = 0,36 (балла)2 r2 = в 2 y / б2 y = 0,046 / 0,36 = 0,13 (13%) r = 0,36 построение аналитической регрессии. yx = a + bx xy = (åxyjI ) / åjI xy = 8,22 б2 x = 5,1 (ч/нед)2 b = (xy – x y) / б2 x = (8,22 – 8,036) / 5,1 = 0,032 a = y – bx = 4,1 – 0,032 × 1,96 = 4,03 Линейное уравнение регрессии зависимости среднего балла зачётки за 1 курс от самообразования: yx = 2,96 + 0,068х x = 0 y = 3,4 x = 7 y = 4,5 rxy = (xy – x y) / бx бy = (8,2 – 8,036) / 2,25 × 0,6 = 0,12 Корреляционное поле Эмпирическая линия регрессии Аналитическая линия регрессии Вывод: r2 свидетельствует о том, что 13% общей вариации результативного признака вызвано влиянием признака фактора—самообразованием. Можно сказать, что это очень слабая корреляционная связь. Зная коэффициент b, предполагаем, что для данной совокупности студентов с увеличением самообразования на 1 ч/нед средний балл зачётки увеличивается на 0,032 балла. rxy говорит о том, что между признаком-результатом и признаком-фактором есть слабая прямая линейная связь. Министерство Высшего Образования РФ Санкт-Петербургский Государственный Инженерно-Экономический Университет Лабораторные работыПо статистикеСтудентки 1 курса Группы 3292 Специальность коммерция Харькиной Анны. Преподаватель: Карпова Г. В. Оценка: СПб 2001 |