Реферат: ЭТПиМЭ

Название: ЭТПиМЭ
Раздел: Рефераты по схемотехнике
Тип: реферат

С О Д Е Р Ж А Н И Е

Ч а с т ь 1

1.1. Упрощение логических выражений.

1.2. Формальная схема устройства.

1.3. Обоснование выбора серии ИМС.

1.4. Выбор микросхем.

1.4.1. Логический элемент ² ИСКЛЮЧАЮЩЕЕ ИЛИ ² .

1.4.2. Логический элемент ² 2 ИЛИ ² с мощным открытым коллекторным выходом.

1.4.3. Логический элемент ² 2 И ² с открытым коллектором.

1.4. 4 . Логический элемент ² 2 И ² с повышенной нагрузочной способностью.

1.4. 5 . Логический элемент ² НЕ ²

1.5. Электрическая принципиальная схема ЦУ.

1.6. Расчет потребляемой мощности и времени задержки.

1.6.1. Потребляемая мощность.

1.6.2. Время задержки распространения.

Ч а с т ь 2

2.1. Расчет базового элемента цифровой схемы.

2.1.1. Комбинация: Х1 = Х2 3 = Х4 = ² 1 ² .

2.1.2. Комбинация: Х1 = Х2 3 = Х4 = ² 0 ² .

2.1.3. Любая иная комбинация.

2.2. Таблица состояний логических элементов схемы.

2.3. Таблица истинности.

2.4. Расчет потенциалов в точках.

2.4.1. Комбинация 0000.

2.4.2. Комбинация 1111.

2.4.3. Любая иная комбинация.

2.5. Расчет токов.

2.5.1 Комбинация 0000.

2.5. 2 Комбинация 1111.

2.6. Расчет мощности рассеиваемой на резисторах.

2.6.1. Комбинация 0000.

2.6.2. Комбинация 1111.

Ч а с т ь 3

3.1. Разработка топологии ГИМС.

3.2. Расчет пассивных элементов ГИМС.

3.3. Подбор навесных элементов ГИМС.

3.4. Топологический чертеж ГИМС (масштаб 10:1).

В А Р И А Н Т № 2

В ы х о д: ОК; ОС; или ОЭ.

Рпот < 120 мBт

tз.р. £ 60 нс


Ч а с т ь 1

1.1. Упрощение логических выражений.


1.2. Формальная схема устройства.

1.3. Обоснование выбора серии ИМС.

Учитывая, что проектируемое цифровое устройство должно потреблять мощность не превышающую 100мВт и время задержки не должно превышать 100 нс для построения ЦУ можно использовать микросхемы серии КР1533 (ТТЛШ) имеющие следующие технические характеристики:

Напряжение питания: 5В10%.

Мощность потребления на вентиль: 1мВт.

Задержка на вентиль: 4 нс.

1.4. Выбор микросхем.

1.4.1. Логический элемент ² ИСКЛЮЧАЮЩЕЕ ИЛИ ² .

D1 - KP1533 ЛП 5

Параметры:

Рпот = Епит × Iпот = 5 × 5,9 = 29.5 мВт

Епит = 5 В

Iпот = 5,9 мА

1.4.2. Логический элемент ² 2 ИЛИ ² с мощным открытым коллекторным выходом.

D2 - КР1533ЛЛ4

Параметры:

Епит = 5 В

I1 пот = 5 мА

I0 пот = 10,6 мА

1.4.3. Логический элемент ² 2 И ² с открытым коллектором.

D3 - KP1533 ЛИ2

Параметры:

Епит = 5 В

I1 пот = 2,4 мА

I0 пот = 4,0 мА

1.4.3. Логический элемент ² 2 И ² с повышенной нагрузочной способностью.

D4 - KP1533 ЛИ1

Параметры:

Епит = 5 В

I1 пот = 2,4 мА

I0 пот = 4 мА

1.4. 5 . Логический элемент ² НЕ ² .

D5 - KP1533 ЛН1

Параметры:

Епит = 5,5 В

I1 пот = 1,1 мА

I0 пот = 4,2 мА

D5

D4

D2

D1

1.5. Электрическая принципиальная схема ЦУ.

D3


С учетом выбранных микросхем внесем в формальную схему некоторые изменения (с целью минимизировать количество микросхем).

D4

D3

D1

D5

D2

1

1

1

1

1

1

1.6. Расчет потребляемой мощности и времени задержки.

1.6.1. Потребляемая мощность.

Pпот = Pпот D1 + Pпот D2 + Pпот D3 + Pпот D4 + Pпот D5 = 29.5 + 39 + 16 + 16 + 13.25 = 113.75 мВт

113.75 < 120 - Условие задания выполняется.

1.6.2. Время задержки распространения.

Для расчета времени задержки возьмем самый длинный путь от входа к выходу. Например от входов х2 х3 до выхода y2 . Тогда:

tз.р. = tз.р. D 5.2 + tз.р. D 2 .1 + tз.р. D3.2 = 9.5 + 10.5 + 34.5 = 54,5 мВт

54,5 < 60 - Условие задания выполняется.

Ч а с т ь 2

2.1. Расчет базового элемента цифровой схемы.


Для трех комбинаций входных сигналов составим таблицу состояний всех активных элементов схемы.

2.1.1. Комбинация: Х1 = Х2 3 = Х4 = ² 1 ² .

Если на все входы многоэмиттерного транзистора VT1 поданы напряжения логической ²1², то эмиттеры VT1 не получают открывающегося тока смещения (нет разности потенциалов). При этом ток, задаваемый в базу VT1 через резистор R1 , проходит от источника Eпит в цепь коллектора VT1 , смещенного в прямом направлении, через диод VD1 и далее в базу VT2 . Транзистор VT2 при этом находится в режиме насыщения (VT2 - открыт) в точке ² B ² Uб =0,2 В (уровень логического нуля). Далее ток попадает на базу VT4 и открывает VT4 на выходе схемы ²0².

2.1.2. Комбинация: Х1 = Х2 3 = Х4 = ² 0 ² .

Когда на входы многоэмиттерного транзистора VT1 поданы уровни логического нуля переходы база - эмиттер смещаются в прямом направлении. Ток, задаваемый в его базу через резистор R1 проходит в цепь эмиттера. При этом коллекторный ток VT1 уменьшается, поэтому транзистор VT2 закрывается. Транзистор VT4 также закрывается (т.к. VT2 перекрыл доступ тока к базе VT4 ). На выход, через открытый эмиттерный переход VT3 попадает уровень логической единицы - на выходе ²1².

2.1.3. Любая иная комбинация.

Например: Х1 = 1; Х2 = 0; Х3 = 1; Х4 = 1

Когда хотя бы на один любой вход многоэмиттерного транзистора VT1 подан уровень логического нуля соответствующий (тот на который подан ²0²) ² В ² переход база-эмиттер смещается в прямом направлении (открывается) и отбирает базовый ток транзистора VT2 . Получается ситуация как в пункте 2.1.1.

2.2. Таблица состояний логических элементов схемы.

Х1

Х2

Х3

Х4

Uвх1

Uвх2

Uвх3

Uвх4

VT1

VT2

VT3

VT4

Uвых

Y

1

1

1

1

5

5

5

5

Закр

откр

закр

откр

0,2

0

0

0

0

0

0,2

0,2

0,2

0,2

Откр

закр

откр

закр

5

1

0

0

1

1

0,2

0,2

5

5

Откр

закр

откр

закр

5

1

2.3. Таблица истинности.

На выходе схемы появится уровень логической единицы при условии, что хотя бы на одном, но не на всех входах ²1². Если на всех входах ²1², то на выходе ²0².

Х1

Х2

Х3

Х4

Y

0

0

0

0

1

0

0

0

1

1

0

0

1

0

1

0

0

1

1

1

0

1

0

0

1

0

1

0

1

1

0

1

1

0

1

0

1

1

1

1

1

0

0

0

1

1

0

0

1

1

1

0

1

0

1

1

0

1

1

1

1

1

0

0

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

0

- Схема выполняет логическую функцию²И-НЕ².

2.4. Расчет потенциалов в точках.

2.4.1. Комбинация 0000.

При подаче на вход комбинации 0000 потенциал в точке ² A ² складывается из уровня нуля равно 0,2 В и падения напряжения на открытом p-n переходе равном 0,7 В. Значит потенциал в точке ² A ² Uа = 0,2 + 0,7 = 0,9 В.

Транзистор VT2 закрыт (см. п. 2.1.2.) ток от источника питания через него не проходит поэтому потенциал в точке ² B ² Uб = Eпит = 5 В. Транзистор VT2 и VT4 закрыт, поэтому потенциал в точке ² C ² Uс =0 В. Потенциал в точке ² D ² складывается из Епит = 5 В за вычетом падения напряжения на открытом транзис-торе VT3 равным 0,2 В и падения напряжения на диоде VD2 = 0,7 В. Напряжение Ud = 5 - ( 0,2 + 0,7 ) = 4,1 В.

2.4.2. Комбинация 1111.

При подачи на вход комбинации 1111 эмиттерный переход VT1 запирается, через коллекторный переход протекает ток. На коллекторный переход VT1 подают напряжение равным 0,7 В. Далее 0,7 В подают на диоде КD1 и открытом эмитторном переходе транзистора VT2 , а также на открытом эмиттерном переходе транзистора VT4 . Таким образом потенциал в точке ² a ² Ua = 0,7 + 0,7 + 0,7 + 0,7 =2,8 В. Потенциал в точке ² C ² Uс = 0,7 В. (Падение напряжения на эмиттерном переходе VT4 ).

Потенциал в точке ² B ² напряжение базы складывается из потенциала на коллекторе открытого транзистора VT2 = 0,2 В и падения напряжения на коллекторном переходе транзистора VT3 = 0,7 В. Напряжение Uб = 0,2 + 0,7 = 0,9 В. Потенциал в точке ² D ² напряжение Ud = 0,2 В. (Напряжения на коллекторном переходе открытого эмиттерного перехода VT4 ).

2.4.3. Любая иная комбинация.

При подачи на вход любой другой комбинации содержащей любое количество нулей и единицу (исключая комбинацию 1111) приведет к ситуации аналогичной п.3.2.1.

2.5. Расчет токов.

2.5.1 Комбинация 0000.

2.5. 2 Комбинация 1111.

2.6. Расчет мощности рассеиваемой на резисторах.

2.6.1 Комбинация 0000.

PR1 = IR1 × U R 1 = 1,025 × (5-0,9)=4,2 мВт

PR 2 = IR 2 × U R2 = 0 мВт

PR 3 = IR 3 × U R 3 = 0 мВт

2.6.2 Комбинация 1111.

PR1 = IR1 × U R 1 = 0,55 × (5-2,8) = 1,21 мВт

PR 2 = IR 2 × U R2 = 2,05 × (5-0,9) = 8,405 мВт

PR 3 = IR 3 × U R 3 = 0,38 × 0,7 = 0,266 мВт

Сведем расчеты в таблицу.

Х1

Х2

Х3

Х4

Ua

U б

Uc

Ud

IR1

IR2

IR3

PR1

PR2

PR3

0

0

0

0

0,9

5

0

4,1

1,025

0

0

4,2

0

0

1

1

1

1

2,8

0,9

0,7

0,2

0,55

2,05

0,38

1,21

8,4

0,26

0

0

1

1

0,9

5

0

4,1

1,025

0

0

4,2

0

0

Ч а с т ь 3

3. Разработка топологии ГИМС.

В конструктивном отношении гибридная ИМС представляет собой заключенную в корпус плату (диэлектрическую или металлическую с изоляционным покрытием), на поверхности которой сформированы пленочные элементы и смонтированы компоненты.

В качестве подложки ГИМС используем подложку из ситала, 9-го типоразмера имеющего геометрические размеры: 10х12 мм (см[2] стр.171; табл. 4.6). Топологический чертеж ГИМС выполним в масштабе 10:1.

3.1. Расчет пассивных элементов ГИМС.

Для заданной схемы требуется 3 резистора следующих номинальных значений:

R1 = 4 кОм R2 = 2 кОм R3 = 1,8 кОм

Сопротивление резистора определяется по формуле:

,

где:

RS - удельное поверхностное сопротивление материала.

- длина резистора.

b - ширина резистора.

Для изготовления резисторов возьмем пасту ПР - ЛС имеющую RS =1 кОм .

Тогда:

=2 мм b = 0,5 мм

R1 = 1000 × ( 2 / 0,5 ) = 4 кОм

=1 мм b = 0,5 мм

R2 = 1000 × ( 1 / 0,5 ) = 2 кОм

=2,25 мм b = 1,25 мм

R3 = 1000 × ( 2,25 / 1,25 ) = 1,8 кОм

Сведем результаты в таблицу.

Номиналы резисторов кОм.

Материал резистора.

Материал контакта площадок.

Удельное сопротивление поверхности RS , (Ом /  )

Удельная мощность рассеивания ( P0 , Вт / см2 ).

Способ напыления пленок.

- длина резистора.

(мм).

B - ширина резистора.

(мм).

4

ПАСТА ПР-1К

ПАСТА ПП-1К

1000

3

Сетно-графия

2

0,5

2

ПАСТА ПР-1К

ПАСТА ПП-1К

1000

3

Сетно-графия

1

0,5

1,8

ПАСТА ПР-1К

ПАСТА ПП-1К

1000

3

Сетно-графия

2,25

1,25

3.2. Подбор навесных элементов ГИМС.

Для данной схемы требуется:

1) один 4-х эмиттерный транзистор.

2) три транзистора n-p-n.

3) два диода.

Геометрические размеры навесных элементов должны быть соизмеримы с размерами пассивных элементов:

1) В качестве 4-х эмиттерного транзистора использован транзистор с геометрическими размерами 1х4 мм и расположением выводов как на рис.1.

2) В качестве транзистора n-p-n используем транзистор КТ331.

Эксплутационные данные:

Umax кэ = 15 В

Umax бэ = 3 В

I к max = 20 мА

3) В качестве диодов использован диод 2Д910А-1

Эксплутационные данные:

U об р = 5 В

I пр = 10 мА

Проверим удовлетворяет ли мощность рассеивания на резисторах максимальной мощности рассеивания для материала из которого изготовлены резисторы, а именно для пасты ПР-1К у которой P0 = 3 Вт/см2 .

Для R1

P1 max = 4,2 мВт

SR1b = 2 × b = 2 × 0,5 = 1 мм2

Необходимо чтобы P0 ³ P1 max , т.е. условие выполняется.

Для R2

P2 max = 8,4 мВт

SR2b = 2 × b = 1 × 0,5 = 0,5 мм2

Необходимо чтобы P0 ³ P2 max , т.е. условие выполняется.

Для R3

P3 max = 0,26 мВт

SR2b = 2 × b = 2,25 × 1,25 = 2,82 мм2

Необходимо чтобы P0 ³ P3 max , т.е. условие выполняется.

3.3. Топологический чертеж ГИМС (масштаб 10:1).