Реферат: Лекции по механике
Название: Лекции по механике Раздел: Рефераты по физике Тип: реферат | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Лекция 1 Кинематика. Введение. Наукой обычно называют попытки систематизировать сумму знаний об ок-ружающем нас материальном мире, о самом человеке и о результатах его деятель-ности. Сам термин «наука» в настоящее время употребляют во множественном числе, подчеркивая многогранность этого понятия. В этом смысле науки раз-деляют на гуманитарные и естественные. Общим для всех наук является обяза-тельное использование формальной логики как универсального метода научного мышления. Физика как отдельная наука изучает наиболее общие законы формирования и развития окружающей нас материи в ее наиболее примитивных формах, которые принято называть неживой природой. Поэтому можно утверждать, что физика является фундаментом всех естественных наук, в частности географии. В ХIX и ХХ веках физика пережила бурный расцвет, физические знания и физический метод исследования получили большую известность и нашли при-менения в различных аспектах человеческой деятельности. Сущность этого метода состоит в том, что в основу критической оценки всех разработанных физических теорий положен эксперимент. На ранних стадиях развития науки физики свои заключения строили на основе реальных наблюдений различных природных явлений, например, таких как гроза (Б. Франклин и Г.В. Рихман). Позднее человек научился искусственно воспроизводить эти явления в лабораторных условиях – «ставить научные эксперименты ». Ясно, что ни одна лаборатория не в силах обеспечить полное воспроизведение всех природных условий наблюдений какого-либо явления. Поэтому для правильной постановки того или иного физического эксперимента необходимо провести правильный анализ изучаемого явления, выделить его наиболее существенные связи с остальным миром. Таким образом изучение явления или объекта всегда проводится в некотором приближении, когда исследователь сознательно или неосознанно отбрасывает некоторые детали воспроизводимого явления. Получив экспериментальные данные, наблюдатель для их объяснения создает на основе имеющихся у него представлений путем синтеза рабочую гипотезу, которая может объяснить не только один, но и целую группу подобных экспериментов. Важно отметить, что осмысление результатов эксперимента идет в некотором упрощенном или, как принято говорить, в модельном представлении, т.е. само явление заменяется его некоторым упрощенным представлением или моделью. Если разработанные представления оказываются справедливыми для достаточно широкого класса явлений, то принято говорить о возникновении физической теории. Отдельные положения этой теории носят названия физических законов[1] , при условии их выполнения для всего класса изученных объектов и явлений. Важной особенностью физической науки является использование количественных характеристик отдельных свойств физических объектов. Эти характеристики определяются путем измерений , и для установления взаимосвязи между различными физическими параметрами применяется количественная логика, т.е. математика. Математика является мощным средством для аналитического представления физических законов и следствий из них. Любая физическая теория должна быть справедливой для всех явлений природы, в противном случае теория носит лишь частный (ограниченный) характер. Если появляются новые экспериментальные факты, которые не объясняются с точки зрения разработанной теории, то это как раз и указывает на ограниченность теории. В этом случае становится очевидной необходимость построения новой теории, в которой новый экспериментальный материал находит свое естественное объяснение (пример – механика Ньютона и теория относительности Эйнштейна). Здесь важно подчеркнуть тот факт, что критерием оценки справедливости того или иного логического построения выступает эксперимент . Именно он является своеобразным «верховным судьей», выносящим свой «приговор» относительно какой-либо теории. Однако цепочечная связь «эксперимент – гипотеза – закон – теория – эксперимент» не означает, что физическая теория играет лишь описательную роль, и ее призвание состоит только в объяснении проведенных экспериментов. Союз теории и эксперимента носит творческий характер: атомная теория строения вещества получила всеобщее признание задолго до того, когда стало возможно непосредственное наблюдение отдельных атомов. Курс общей физики, который будет читаться два семестра, рассчитан на формирование физического мировоззрения, создания естественно-научной базы для правильного понимания всех явлений окружающего нас мира. Традиционно рассмотрение общей физики начинается с раздела «Меха-ника». § 1-1. Основные понятия кинематики. Механическим движением называется изменение положения предмета относительно заданной системы отсчета. Понятие системы отсчета включает в себя тело отсчета и систему координат. Для большинства задач нашего курса достаточно ограничиться прямоугольной системой координат и выбрать в качестве тела отсчета Землю. Простейшим объектом для изучения механического движения может служить материальная точка[2] . Для описания положения материальной точки относительно выбранной системы отсчета принято использовать векторное пред-
называется кинематическим законом движения: r = r ( t ). Координаты точки в этом случае также являются функциями времени: х = х(t), у = у(t) (см.рис.1) и z = = z(t), которые можно рассматривать как параметрические уравнения движения. Если за время в t точка переместилась из положения А в положение В (см.рис.1), то радиус - вектор Dl , проведенный из А в В, называется перемещением точки за время в t. Из рис. 1 видно, что Dl = rB - rA = в r. Для наиболее точного описания движения необходимо выбирать время в t как можно меньше. В этом случае кри-
малым перемещением dl i .( S =) Другой известной характеристикой механического движения точки служит скорость. Средняя скорость < v > за промежуток времени в t определяется как: . ( 1- 1 ) Ясно, что при таком определении скорости ее значение зависит от выбора величины временного интервала в t и , как следствие, от величины в l . Однако при уменьшении величины в t отношение (1-1) стремится к некоторому пределу, кото-рый принято называть скоростью материальной точки в данный момент времени: = , ( 1- 2 ) поскольку из рис.1 следует, что в l = в r. Другими словами можно сказать, что скорость является первой производной радиуса-вектора по времени. Важно отметить, что S = , и первая производная пути по времени дает лишь абсолютное значение скорости: =. Как и любой вектор, вектор скорости можно представить в виде суммы составляющих по координатным осям: v = , ( 1-3 ) где i , j , k являются единичными векторами, направленными соответственно вдоль осей X,Y и Z. С другой стороны радиус вектор r также можно представить в r = x i + y j + z k, ( 1-4 ) где x,y и z представляют собой проекции радиуса-вектора на направление соответствующих координатных осей . Дифференцируя формулу ( 1-4 ) и сравнивая результат дифференцирования с выражением (1- 3 ), получим: vx = = x ; vy = = y и vz = = z , (1- 5 ) которые означают, что скорости движения проекции точки вдоль координатных осей равны проекциям вектора скорости на соответствующие оси. Из выражения (1-5) следует, что по известной зависимости координат точки от времени ( известному закону движения ) x(t), y(t) и z (t) простым дифференцированием можно найти проекции vx , vy , vz вектора скорости на координатные оси, а следовательно и сам вектор скорости в любой момент времени. Величина вектора скорости (его модуль) как и величина любого вектора находится как корень квадратный из суммы квадратов соответствующих проекций: . ( 1- 6 ) Несколько сложнее решается обратная задача - нахождение закона движения по заданной зависимости вектора скорости от времени. Например, если известна зависимость от времени проекции скорости vx (t) , то зависимость координаты х от времени x(t) находится путем интегрирования x(t) = + х0 , где х0 - координата точки в начальный момент времени ( при t = 0 ). Зависимость от времени других координат находится аналогичным способом. Кроме того, из формулы (1-3) вытекает, что скорость любого движения можно представить как результат сложения трех прямолинейных движений вдоль координатных осей X,Y и Z ,т.е. любое сложное движение можно представить как сумму прямолинейных движений ( принцип суперпозиции движений ). Примером применения этого принципа может служить вычисление так называемой первой космической скорости, т.е. такой скорости, которою надо сообщить любому телу параллельно земной поверхности, чтобы оно никогда не упало на Землю. В прене-
время, находясь в свободном падении, тело опустится на расстояние ВС так, что ОВ = АО =Rз , то очевидно, что тело сохранит неизменной свою высоту над поверхностью Земли. Из в АОС по теореме Пифагора следует:АО2 + АС2 = ОС2 .В то же время АС = vI Dt, АО » RЗ (RЗ - радиус Земли), ОС = ОВ + ВС = + (1/2)g(Dt)2 ( предполагается, что время Dt достаточно мало и проекцией скорости vI на направление АО можно пренебречь). Заменяя стороны в АОС на основании приведенных равенств, имеем: . (1- 7 ) После приведения подобных членов и сокращения обеих частей этого уравнения на получим: . При Dt 0 выражение для первой космической скорости приобретает такой вид: . (1- 8 ) Как видно из вывода выражения для первой космической скорости, любое тело, двигаясь вокруг Земли, находится в свободном падении, но уменьшение высоты полета при свободном падении на Землю в точности компенсируется за счет приращения расстояния до Земли при движении по касательной. Однако случаи, когда тело сохраняет свою скорость неизменной, крайне редки. Наоборот, в общем случае скорость изменяется как по величине, так и по направлению. Для характеристики быстроты изменения скорости вводится понятие ускорения. Ускорением в данный момент времени называется предел отношения приращения скорости к интервалу времени, за который произошло это приращение: = v = . (1- 9 ) Вектор ускорения можно также разложить по координатным осям: а = а x i + a y j + a z k . ( 1-10 ) Модуль вектора ускорения равен: . ( 1- 11 ) Прямым дифференцированием аналогично компонентам вектора скорости a x = v x = x ; a y = v y = y ; a z = v z = z . ( 1-12 ) Если известны зависимость от времени вектора ускорения и начальное значение вектора скорости, то вектор скорости в любой последующий момент времени путем интегрирования. Например, для проекции v x : и , ( 1- 13 ) где v x0 - проекция скорости на ось Х в начальный момент времени. Ранее указывалось, что по известной зависимости v (t) можно найти закон движения. Следовательно, по известному ускорению, зная начальные значения положения точки и ее скорости, можно найти ее закон движения. С точки зрения практики вектор ус-
ренесем вектор vB в точку начала вектора vA . Тогда разность двух векторов vB - vA может быть представлена в виде вектора Dv = DC. В свою очередь, вектор Dv мо- . (1- 14 ) Первое из слагаемых в (1- 14 ) называют нормальной составляющей ускорения или просто нормальным ускорением, а второе - тангенциальным. Таким образом , (1- 15 ) . (1- 16 ) Модуль полного ускорения определяется следующим выражением: . ( 1-17 ) § 1 - 2. Кинематика вращательного движения.
Из этого соотношения приращение скорости Dv равно: Деля выражение ( 1-19 ) для приращения скорости на промежуток времени Dt, имеем: Для случая вращательного движения полезными оказываются такие дополнительные кинематические характеристики как угловая скорость и угловое ускорение. Величина угловой скорости w определяется как отношение угла Dj, который описывает радиус-вектор точки за время Dt, т.е. . ( 1-21 )
ловой скорости вращения за время Dt. При этом направление b совпадает с направлением w, если за время Dt происходит увеличение скорости w и направление b противоположно вектору w, если за время Dt угловая скорость уменьшается. Таким образом . ( 1- 22 ) При вращательном движении между линейной скоростью точки, направлен- ной по касательной к окружности вращения существует определенная взаимосвязь. Действительно [w r ] , ( 1-23 ) где квадратные скобки обозначают векторное произведение двух векторов - w и r. Как известно, два вектора могут быть перемножены двумя способами - скалярно и векторно. Поскольку при скалярном произведении векторов получается число (скаляр), а скорость по определению - вектор, то остается только векторный Лекция 2 Динамика материальной точки . § 2-1. Первый закон Ньютона. Кинематика устанавливает законы движения материальной точки, но не указывает причины вызвавшие это движение, а также факторы, влияющие на вариации кинематических параметров движения. Законы Ньютона, сформулированные более 300 лет назад [3]
, явились результатом обобщения большого количества наблюдений и экспериментов. Эти законы имеют фундаментальное значение и в наше время. Первый закон утверждает, что существуют такие системы отсчета, в которых всякое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействия со стороны других тел не заставят его изменить это состояние.
Свойство тела сохранять свое состояние неизменным называют инерцией
, а системы отсчета, в которых выполняется этот закон, - инерциальными.
Физический смысл закона состоит в том, что для механики нет различия между состоянием покоя и равномерного прямолинейного движения. Он подчеркивает относительность движения. Строго говоря, § 2-2. Второй закон Ньютона. Опыт показывает, что одна и та же сила сообщает различным телам разные ускорения. Более массивные тела приобретают меньшие ускорения. Для характеристики способности тел противостоять действию силы используется понятие массы
. Чем меньше ускорение, которое получает тело, тем больше его масса, т.е. . ( 2-1 ) Приняв какую-либо массу за эталон, с помощью этого соотношения можно измерять любую массу. Величина ускорения, которое получает тело определенной массы, зависит от величины силы, - чем больше сила F, тем больше ускорение ( а ~ F ) , по другому a = k F, где k - коэффициент пропорциональности. С учетом (2-1) имеем: . ( 2-2 а ) Выбор коэффициента пропорциональности зависит от выбора системы единиц. В настоящее время во всех существующих системах единиц принято считать . ( 2-2 б) Ускорение - вектор, масса - величина скалярная ( число ), поэтому сила тоже вектор, направление которого совпадает с направлением ускорения. Если на тело действует несколько сил, то ускорение тела пропорционально их геометрической сумме: . ( 2-3 ) Уравнение ( 2-3 ) представляет одну из форм записи второго закона Ньютона. В механике это уравнение принято называть уравнением движения . Это уравнение - векторное, и его можно заменить тремя скалярными, проектируя поочередно( 2-3 ) на оси координат X, Y и Z. Второй закон Ньютона может быть сформулирован несколько другим способом с помощью понятия импульса тела . Импульсом принято называть величину p = mv, где v - скорость тела. В ньютоновской механике предполагается, что масса тела постоянна и не зависит от скорости, поэтому: ma = m . ( 2-4 ) С учетом ( 2-4 ) уравнение ( 2-3 ) принимает такой вид : . ( 2-5 ) § 2-3. Третий закон Ньютона. Понятие силы определено как мера взаимодействия тел, т.е. при рассмотрении движения какого-нибудь тела учитывается только одна сторона этого взаимодействия. Ясно, однако, что все тела надо рассматривать как равноправные, т.е. если второе тело воздействует на первое, то и первое тело воздействует на второе. Третий закон Ньютона устанавливает соотношение между этими воздействиями. Силы, с которыми два тела действуют друг на друга, равны по величине и направлены пр одной прямой в разные стороны. Пример: книга лежит на столе; она притягивается к Земле и вследствие этого давит на стол. Однако книга не проваливается к центру Земли, т.к. стол со своей стороны действует на книгу с силой равной по величине силе давления книге на стол. Эта сила со стороны стола носит название реакции опоры. К самой книге приложено две силы: сила притяжения и сила реакции опоры. Они равны по величине и противоположно направлены, т.е. их сумма равна нулю, поэтому книга никуда не двигается. § 2-4. Природа механических сил. Из кинематики известно, что знание величины и направления ускорения позволяет вычислить значения радиуса - вектора материальной точки в любой последующий момент времени, т.е. предсказать [5] положение точки. Законы динамики позволяют сделать это, если известна правая часть уравнений (2-3) или (2-5). Другими словами, нужно уметь определять силы, действующие на тело, положение которого требуется описать. Взаимодействие между макроскопическими телами физика сводит к взаимодействию между элементарными частицами. Таких элементарных частиц в настоящее время известно более сотни. Среди них наиболее популярны электрон, протон и нейтрон. Для характеристики всех частиц вводятся такие понятия как масса покоя, электрический заряд, собственный механический момент ( спин ), а также четность, странность, красивость, барионный заряд, цветовой заряд, слабый заряд и т.д. Установлено, что между элементарными частицами существует четыре фундаментальных взаимодействия: сильное, слабое, электромагнитное и гравитационное. Сравнительные характеристики этих взаимодействий приведены в таблице 1. Таблица 1.
В классической физике считается, что электромагнитное и гравитационное взаимодействия осуществляются посредством поля
. Поле - это особый вид материи, характерный тем, что каждой точке пространства можно приписать определенное значение поля. Физическое поле - непрерывно. Однако, современная физика, базирующаяся на квантовых представлениях, считает дискретной
любую физическую величину, которая может изменяться только определенными порциями - квантами
. Она приписывает полям дискретный характер, когда изменение поля рассматривается как излучение или поглощение некой частицы, распространяющейся с конечной скоростью ( не больше скорости света с
). Другими словами, в квантовой физике взаимодействия сводятся к обмену теми или иными частицами, переносящими квант действия. Если квант действия электромагнитного поля Строго говоря, силы в механике могут быть сведены к этим двум взаимодействиям, тем более, что два других типа описывают взаимодействия, существующие только в микромире. В частности, сильное взаимодействие может объяснить наличие ядерных сил, ответственных за устойчивость атомного ядра. Слабые взаимодействия возникают между микрочастицами, обладающими так называемым слабым зарядом. До 1983 года этот тип взаимодействия рассматривался только теоретиками, но в этом году экспериментально была открыта W+ - частица с энергией 81 ГэВ ( Гига - 109 , электрон - Вольт - единица измерения энергии, равная 1,6•10 -19 Джоуля), так что слабое взаимодействие получило опытное подтверждение. Из таблицы 1 видно, что гравитационные силы являются слабейшими из всех фундаментальных взаимодействий, однако они обладают свойствами аддитивности и достигают значительных величин в космическом масштабе ( притяжение Луны, строение Солнечной системы и т.п.). Величина гравитационной силы притяжения двух точечных масс m1 и m2 определена Ньютоном и известна как закон всемирного тяготения: , ( 2-6 ) где r - расстояние между массами, а G = 6,67 10 -11 Н· м2 /кг2 - гравитационная постоянная. Чтобы подчеркнуть, что сила - вектор, закон записывают несколько иначе, рассматривая силу, действующую на m2 со стороны m1 : r12 , ( 2-7 ) откуда видно направление силы ( она направлена вдоль прямой, соединяющей взаимодействующие массы). Модуль силы притяжения P тела массы m к Земле , которую называют силой тяжести можно записать так: ( 2-8 ) где величина - ускорение свободного падения, МЗ - масса Земли, а RЗ - радиус Земли. Из выражения g видно, что оно не зависит от массы выбранного тела и поэтому одинаково для всех тел в определенной точке земной поверхности.
вниз с ускорением а ( см рис.7), то уравнение второго закона Ньютона, записанное в неподвижной системе координат[6] , имеет вид: ma = P - N , ( 2-9 ) откуда N = P - ma = mg - ma = m( g - a ). ( 2-10 ) По третьему закону Ньютона сила реакции опоры N равна и противоположно направлена силе давления гири на весы , т.е. весу гири ( N = ). Поэтому вес
ны электрическими силами. Силы упругости обусловлены деформациями. Деформации связаны с изменением взаимного расположения молекул, образующих рассматриваемое тело, причем силы возникают лишь тогда, когда деформации носят упругий характер. В этом случае справедлив закон Гука так, что , ( 2-12 ) д Рассмотрение сил трения можно ограничить двумя примерами : силами сухого и силами вязкого трения[7] . Сила сухого трения скольжения известна из школьного курса физики: Fтр = -m N, где m - коэффициент трения, характеризующий свойства взаимодействующих поверхностей, а N - так называемая сила нормального давления . В отличие от сил вязкого трения эта сила не зависит от скорости движения тела. Сила вязкого трения, напротив, зависит от величины скорости, причем степень зависимости меняется по мере возрастания скорости. Для сравнительно небольших скоростей она может быть представлена в таком виде: Fвяз = - bv = -. ( 2-13 ) Величина коэффициента b зависит как от свойств самого тела, которое движется в вязкой среде, так и от свойств среды. Иногда эту силу трения удобнее представлять в таком виде: Fвяз = - kS, ( 2-14 ) где S - площадь соприкосновения тела со средой, k - коэффициент внутреннего трения среды, а величина производной, входящей в выражение для силы, носит название градиента скорости, описывающего быстроту изменения скорости слоев среды, увлекаемых телом, в направлении, перпендикулярном направлению скорости тела. Практически важное значение имеет сила трения покоя , возникающая между соприкасающимися телами. Максимальную величину этой силы обычно оценивают по формуле для силы трения скольжения, хотя в действительности они несколько отличаются друг от друга. § 2- 5. Динамика вращательного движения материальной точки.
ления ее осей совпадает с направлением скорости тела в этот момент времени и с Рассмотрим в качестве примера движение автомашины по выпуклому мосту, радиус которого r (см. рис.9) .Направим одну из осей следящей системы координат к центру моста, а другую - вдоль направления скорости v. Уравнение движения в этом случае имеет вид ( в проекции на вертикальную ось): maц = mg - N, ( 2-15 ) где через N обозначена сила реакции моста, а mg - сила тяжести. Решая это уравнение относительно N, получаем : N = mg - maц = m(g -), ( 2-16 ) откуда следует, что при = g сила реакции моста будет равна 0 . Но это означает, что автомашина в этот момент времени не оказывает никакого давления на мост, т.е. она находится в состоянии невесомости. Лекция 3 Динамика системы материальных точек.
Умножая первое из этих уравнений на m1 , а второе - на m2 и складывая их, получим: . ( 3-3 ) Из рис.10 и равенства ( 3-1 ) следует, что m2 l 2 = - m1 l 1 . С учетом этого соотношения из выражения ( 3-3 ) можно определить значение радиуса - вектора R: . ( 3-4 ) Обобщая это выражение для произвольного числа материальных точек, получим: , ( 3-5 ) где = М - полная масса системы точек. Скорость центра масс такой системы определяется дифференцированием ( 3-5 ): . ( 3-6 ) Величины mi vi представляют собой импульсы отдельных точек, поэтому урав-нение ( 3-6 ) можно переписать в следующем виде: = Р, ( 3-7 ) где через Р обозначен суммарный импульс системы. Дифференцируя ( 3-7 ), находим выражение для ускорения центра масс системы А: . ( 3-8 ) § 3 -2 Закон изменения импульса системы материальных точек. Для простоты рассмотрим движение системы, состоящей из трех точек, на
( 3-9 )
Складывая эти уравнения, получим: ( 3-10 ) По третьему закону Ньютона внутренние силы попарно равны по величине и противоположны по направлению ( например, f12 = -f21 ). Потому сумма всех внутренних сил равна нулю, и , ( 3-11 ) где через Р обозначен суммарный импульс системы. Обобщая ( 3-11 ) для любого числа материальных точек, можно записать следующее выражение: , ( 3-12 ) которое принято называть законом изменения импульса системы материальных точек. Как видно из этого выражения, изменение суммарного импульса определяется равнодействующей всех внешних сил, действующих на систему. Если же эта равнодействующая равна нулю ( или на систему не действуют никакие внешние силы), то суммарный импульс системы остается постоянным. Это следствие уравнения ( 3-12 ) называется законом сохранения импульса . Другим следствием рассмотренного закона изменения импульса служит теорема о движении центра масс, которая утверждает, что центр масс системы материальных точек под действием внешних сил движется как материальная точка суммарной массы, к которой приложены все внешние силы, и записывается в таком виде: МА =. ( 3-13 ) Доказательство этого утверждения следует из сравнения определения ускорения центра масс( 3-8 ) и выражения ( 3-13 ). Примерами закона сохранения импульса могут служить отдача при стрельбе из огнестрельного оружия, реактивное движение, перемещение осьминогов и т.п. Лекция 4. Динамика твердого тела. § 4-1. Кинематические соотношения. Твердое тело можно рассматривать как систему материальных точек, жестко скрепленных друг с другом. Отсутствие такого закрепления существенно затруднило бы описание движения всего конгломерата точек. Для полного описания движения одной точки необходимо знать ее три координаты, поэтому для N точек число необходимых координат , а следовательно, и число уравнений для их определения составило бы 3N. Так как число N может быть как угодно большим, то возможности строгого решения системы из 3N уравнений весьма ограничены. = [ bri ] . ( 4-1 ) § 4-2. Определение момента силы. Для описания динамики вращательного движения твердого тела необходимо ввести понятие момента силы. При этом надо различать понятия момента силы
шему пути вращается к направлению второго вектора f, а движение оси буравчика
§ 4-3. Основное уравнение динамики вращательного движения.
где fik ( k = 1,2, ...N) представляют собой внутренние силы взаимодействия всех элементов с выбранным, а Fi - равнодействующая всех внешних сил, действующих на i - элемент. Скорость vi каждого элемента вообще говоря может меняться как угодно, но поскольку тело является твердым, то смещения точек в направлении радиусов вращения можно не рассматривать. Поэтому спроектируем уравнение ( 4-4 ) на направление касательной и умножим обе части уравнения на ri : ri ( mi ai )t = ri (ri (fi1 )t + ri (fi2 )t + ..... +ri (fiN )t + ri (Fi )t . ( 4-4a ) В правой части получившегося уравнения произведения типа ri (fi1 )t представляют собой (согласно ( 4-3)) моменты внутренних сил относительно оси вращения, т.к. ri и (f i )t взаимно перпендикулярны. Аналогично произведения ri (Fi )t являются моментами внешних сил, действующих на i-элемент. Просуммируем уравнения дви-
ты сил М1 = ( f12 ) r1 sin(900 - g) = (f12 ) l 12 и M2 = (f21 ) r2 sin(900 - b) = (f21 ) l 21 равны и противоположно направлены. На основании этого можно сделать вывод, что при сложении всех моментов внутренних сил они попарно уничтожатся. Суммарный момент всех внешних сил обозначим S Мi , где Mi = [ ri Fi ]. Левая часть уравнения ( 4-4а ) с учетом (3 -7) представится в таком виде: = =, ( 4-5 ) где величину принято называть моментом инерции твердого тела относительно заданной оси. Эта величина характеризует распределение массы тела относительно определенной оси. Как следует из определения момента инерции - это величина аддитивная. Момент инерции тела складывается из моментов инерции его отдельных элементов, которые можно рассматривать как материальные точки, т.е. I =, где ji = mi - момент инерции материальной точки. При практическом вычислении моментов инерции вместо суммирования используется интегрирование ( суммирование бесконечно малых величин). Если ось, относительно которой вычисляется момент инерции, проходит через центр симметрии тела, то вычисление такого интеграла представляет сравнительно несложную задачу, но в общем случае задачу решить трудно. Для упрощения вычислений полезной оказывается теорема о параллельном переносе осей инерции (теорема Гюйгенса - Штейнера), формулировка которой гласит, что момент инерции относительно любой оси равен сумме момента инерции относительно параллельной оси, проходящей через центр масс, и произведения массы тела на квадрат расстояния между осями , т.е. Iпроиз = Iцм + m d 2 . ( 4-6) Для некоторых тел правильной формы значение моментов инерции относительно осей, проходящих через центр их симметрии приведены в таблице 2. Таблица 2.
называют изменением момента импульса (радиус ri внесен под знак дифференцирования, т.к. все точки вращаются по окружностям постоянного радиуса ) . Если обозначить [ ri mi vi ] = [ri pi ] = Li , a cyмму = L , то уравнение (4-7) можно за- писать так: . ( 4-8 )
L = [ r p ] , ( 4-9 ) § 4-4. Закон сохранения момента импульса. Если правая часть уравнения (4-8) оказывается по каким - либо равной нулю - суммарный момент сил равен нулю, то и L = const. Это случается, если система замкнута, т.е. внешние силы вообще не действуют, или если моменты внешних сил компенсируют друг друга. Наконец, если внешние силы оказываются центральными - линии действия всех сил пересекаются в одной точке. Весьма интересным представляется случай, когда механический момент импульса при вращении тела имеет достаточно большую величину ( по сравнению с моментом внешних сил ). Наиболее ярким примером этого служит гироскоп ( см. рис 16 ).
ся на угол dj так, что изменение момента импульса dL = L1 - L2 = Ldj. В то же время из уравнения ( 4-8 ) следует dL = M dt , или Ldj = M dt , откуда можно придти к выводу, что гироскоп начинает вращаться в плоскости, перпендикулярной плоскости рисунка с частотой, которая называется частотой прецессии. . ( 4-11 ) Если моменты внешних сил малы по сравнению с моментом импульса вращающегося тела, то частота прецессии мала, и тело сохраняет ориентацию оси вращения в пространстве ( пример - жонглирование предметами в цирке). [1]
В отличие от юридических законов, предписывающих те или иные правила поведения, физические законы носят [2] Материальной точкой можно считать любой объект, если его геометрические размеры малы по сравнению с характеристическими расстояниями конкретной задачи. [3] Трактат И. Ньютона «Математические начала натуральной философии» был опубликован в 1687 г. [4] Вес тела - это сила, с которой тело давит на подставку или растягивает нить подвеса. В быту силу в Ньютонах измерять не принято. [5] Это не имеет ничего общего с так называемыми «предсказаниями» оккультных «наук». [6] Положительное направление оси координат удобно направить вниз . [7] Для упрощения изложения материала силы трения качения не рассматриваются . [8] Плечом силы называют величину r sina (cм. выражение (4-2) и обозначения рис.11.). Оно является перпендикуляром, опущенным на линию действия силы. |