Реферат: Морфологические характеристики ПС и их взаимосвязь с оптическими свойствами
Название: Морфологические характеристики ПС и их взаимосвязь с оптическими свойствами Раздел: Рефераты по физике Тип: реферат | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени я.купалы Курсовая работа по специализации, на тему: морфологические характеристики ПС и их взаимосвязь с оптическими свойствами Курсовая работа студента 5-го курса 1-ой группы физико–технического факультета дневного отделения Манжела Александра Николаевича Научный руководитель: Василюк Генадий Тимофеевич Гродно 2001 СОДЕРЖАНИЕ Введение 3 1. Техника и методика эксперимента и расчета 4 2. Морфология и спектры оптической плотности пленок серебра 5 3. взаимосвязь оптических характеристик и параметров шероховатости поверхности пленок серебра 7 ВЫВОДЫ 14 СПИСОК ЛИТЕРАТУРЫ 15 Введение В спектроскопии гигантского комбинационного рассеяния (ГКР) света в качестве ГКР- активных поверхностей (субстратов) широко применяются пленки серебра (ПС), получаемые методом вакуумного напыления металла на стеклянные подложки и характеризующиеся высоким коэффициентом усиления КР [1-7]. Наиболее критическими параметрами, ограничивающими использование таких субстратов в аналитических и физико- химических приложениях, являются: -быстрая (за 10- 12 часов после напыления) деградация КР-усилительных свойств, объясняемая окислением кластеров серебра, образующих микроскопические дефекты поверхности- адсорбционные центры для молекул аналита; -нестабильность ПС в растворах некоторых органических растворителей (например, ацетонитрил); -свойства поверхности ПС, препятствующие адсорбции молекул, обладающих положительно заряженными фрагментами и, следовательно, делающие невозможным их изучение методами ГКР; -нарушение структуры адсорбированных молекул благодаря сильным (часто химическим) взаимодействиям между молекулами и поверхностью. Известно также, что стабильность, адсорбционные и оптические свойства ПС определяются морфологией ее поверхности. В настоящей работе методами математической статистики (корреляционного и факторного анализов) изучена взаимосвязь оптических характеристик пленок серебра (ПС) с параметрами их поверхности. 1. Техника и методика эксперимента и расчета. Пленки серебра получены путем вакуумного (р<10-5 Торр) напыления серебра на стеклянные подложки со скоростью 0.04 нмс в рабочей камере вакуумного поста ВУП-5. Термический отжиг пленок проводили на воздухе (в муфельной печи) при температуре до 350°С [8]. Для регистрации спектров оптической плотности использовался спектрометр SPECORD UV-VIS (Carl Zeiss). Контроль за структурой поверхности пленок осуществлялся с помощью атомно-силового микроскопа (АСМ) фирмы “Нанотехнология” (Москва). Все измерения выполнены при комнатной температуре. Проанализировано 40 образцов ПС с различными спектрами оптической плотности. Статистическая обработка результатов эксперимента проводилась методами корреляционного и факторного анализов с использованием специализированного программного пакета. Факторный анализ проводился методом главных компонент, в котором в качестве критерия оптимальности используют минимум расхождения между ковариационной матрицей исходных признаков и той, которая получается после оценки нагрузок (мера “расхождения” двух матриц в данном случае есть евклидова норма их разности). 2. Морфология и спектры оптической плотности пленок серебра. Структура поверхности ПС зависит от условий их приготовления (скорости напыления, температуры подложки, материалов пленки и подложки и процедуры термической обработки после напыления пленки) [9-11]. Изучение морфологии используемых в наших исследованиях пленок серебра методами атомно-силовой микроскопии показывает, что исходные (неотожженные) пленки серебра представляют собой сплошную пленку толщиной 10…15 нм со случайными шероховатостями высотой 0.1…5 нм (рис.1.1, 1.2). В результате отжига поверхность пленки преобразуется в квазипериодическую островковую структуру с полуэллипсоидальными островками высотой 40…80 нм и сглаженными наноразмерными шероховатостями (рис.1.3, 1.4), а также с улучшенными адсорбционными свойствами по отношению к положительно заряженным фрагментам адсорбатов [12]. Шероховатости поверхности пленки могут быть охарактеризованы поперечными взаимно ортогональными размерами A и B , а также высотой кластеров Hreal . Форма частиц оценивалась отношением (R) высоты (Hreal ) к поперечному размеру (B) (R = Hreal /B), а также отношением (L) главного поперечного размера (A) к ортогональному ему размеру (B) (L = A/B). Рис. 1. АСМ изображения (1, 3) и сечение в плоскости ZУ (2, 4) исходной (1, 2) и отожженной (3, 4) ПС. Разрешение АСМ: 0.5 нм. Оптические характеристики и КР-усилительные свойства ПС определяются, главным образом, структурой их поверхности. Так, спектры оптической плотности ПС определяются, в основном, возбуждением на металлических шероховатостях поверхностных плазменных резонансов [12]. В результате термической модификации наблюдается ~300нм гипсохромный сдвиг максимума полосы оптической плотности (рис.2), соответствующей возбуждению “плоскостных” мод поверхностных плазмонов, и ее сужение [12, 13]. Кроме того, после отжига (ведущего к увеличению высоты островков) появляется новая (~350нм) полоса, соответствующая нормальной компоненте плазмонных осцилляций. Рис. 2. Спектры оптической полотности ПС:исходной (1); отожженной при 125°С (2), при 175°С (3), при 225°С (4), при 350°С (5). 3. взаимосвязь оптических характеристик и параметров шероховатости поверхности пленок серебра. Экспериментальные данные об оптических параметрах 40 образцов ПС, полученные из спектров оптической плотности (максимальное значение оптической плотности Dmax , значение ее Dexc на длине волны возбуждения lexc , длина волны lmax в максимуме оптической плотности, полуширина полосы оптической плотности Dl/2, “отстройка” длины волны возбуждения lmax -lexc , произведения и отношения этих параметров- Dmax (Dl/2), Dmax /(Dl/2), Dexc /(Dl/2), Dmax /(Dl/2)(lmax -lexc )), и средние значения параметров шероховатости поверхности этих ПС (максимальная высота Hmax , реальная высота Hreal , поперечные размеры A и B, минимальное расстояние между островками Dist, коэффициенты формы островков Hreal /A, Hreal /B, A/B), полученные из АСМ-изображений, сведены в (табл. 1). С применением метода корреляционного анализа из программного пакета STATISTICA for Windows были рассчитаны коэффициенты линейной корреляции оптических параметров ПС с результатами АСМ-изучения поверхности пленок (табл. 2). Установлено, что наиболее коррелируют: максимальное значение оптической плотности с расстоянием между островками (коэффициент корреляции 0,95) и коэффициентом формы островков R (0,76); так называемый параметр “качества” спектра оптической плотности Dmax /(Dl/2) с расстоянием между островками (0,93) и коэффициентом формы островков R (0,68); полуширина полосы оптической плотности с расстоянием между островками (-0,79). В приводимой для сравнения таблице коэффициентов корреляции оптических параметров и параметров шероховатости отдельно для о-ПС (табл. 3) эти зависимости проявляются еще более наглядно (вследствие более точной аппроксимации островков и более достоверной программной обработки АСМ-изображений о-ПС по сравнению с н-ПС). Результаты факторного анализа (табл. 4, рис. 3,4) также подтверждают наличие взаимосвязей, выявленных методами корреляционного анализа. Факторный анализ проводился методом главных компонент. В соответствии с графиком собственных значений факторов (рис. 3), для нашей модели были выбраны первые четыре фактора. Факторные нагрузки для них приведены в (табл. 4). Из таблицы видно, что первый фактор наиболее значим и именно он объединяет (связывает) оптические параметры с параметрами шероховатости ПС. При этом, как видно из таблицы, наиболее связаны между собой минимальное расстояние между островками Dist, максимальное значение оптической плотности ПС Dmax и параметр спектра оптической плотности ПС Dmax /(Dl/2). Это же иллюстрируется двумерным (рис. 4) графиками факторных нагрузок. Таблица 1. Данные по спектрам оптической плотности и параметры шероховатости поверхности пленок серебра
Таблица 2Коэффициенты линейной корреляции между параметрами спектров оптической плотности и параметрами шероховатости поверхности пленок серебра
Таблица 3 Коэффициенты линейной корреляции между параметрами спектров оптической плотности и параметрами шероховатости поверхности отожженных пленок серебра
Таблица 4 Факторные нагрузки для оптических параметров и параметров шероховатости поверхности пленок серебра
Рис. 3. График собственных значений факторов, связывающих оптические свойства ПС с параметрами их поверхности. Рис. 4. Двумерный график факторных нагрузок для факторов, связывающих оптические свойства ПС с параметрами их поверхности. Установленная нами взаимосвязь между структурой поверхности ПС и их спектрами оптической плотности может быть объяснена следующими соображениями. Рост (в ходе отжига) довольно больших (~45x65 нм) островков как результат самоорганизации кластеров и реорганизации однородной части пленки ведет к почти 10-кратному увеличению R - главной характеристики шероховатости. Это, в свою очередь, способствует синему сдвигу спектра оптической плотности, который определяется, в основном, спектром возбуждения поверхностных плазменных резонансов (плазмонов). Важным следствием структурной реорганизации пленки является значительное увеличение расстояния между соседними частицами серебра на поверхности пленки, поэтому они оказываются более изолированными. В результате диполь- дипольные взаимодействия между этими частицами становятся более слабыми, нежели ранее. Это и определяет, в основном, полуширину спектра оптической плотности ПС. Четвертая стадия отжига характеризуется процессом унификации формы частиц. Этот процесс также влияет на сужение спектра оптической плотности.. ВЫВОДЫ Параметры спектров оптической плотности ПС находятся в хорошей корреляции с данными по шероховатости их поверхности, полученными методом АСМ. Основными характеристиками, определяющими эту корреляцию, являются расстояние между частицами серебра Dist, а также коэффициент их формы R , равный отношению высоты (Hreal ) к поперечному размеру (B) (R = Hreal /B). Наиболее коррелируют: максимальное значение оптической плотности с расстоянием между островками (коэффициент корреляции 0,95) и коэффициентом формы островков R (0,76); параметр спектра оптической плотности Dmax /(Dl/2) с расстоянием между островками (0,93) и коэффициентом формы островков R (0,68); полуширина полосы оптической плотности с расстоянием между островками (-0,79). ЛИТЕРАТУРА 1. Набиев И.Р., Ефремов Р.Г. Cпектроскопия гигантского комбинационного рассеяния и ее применение к изучению биологических молекул / ВИНИТИ.- М., 1989.- 132 c. (Итоги науки и техники. Серия “Биоорганическая химия”, T.15). 2. Nabiev I.R., Sokolov K.V., Manfait M.. Surface-enhanced Raman spectroscopy and its biomedical applications // Biomolecular spectroscopy / Eds. R. J. H. Clark, R. E. Hester.- London: Wiley, 1993.- P. 267-338. 3. Maskevich S.A., Gachko G.A., Zanevsky G.V., Podtynchenko S.G. Using of heat treament silver island films to get the SERS spectra of adsorbed molecules // Proc. XIV Int. Conf. Raman Spectr. / Ed. Nai-Teng Yu.-New York: Jon Wiley & Sons, 1994.- P.644-645. 4. Feofanov A., Ianoul A., Kryukov E., Maskevich S., Vasilyuk G., Kivach L. and Nabiev I. Nondisturbing and Stable SERS-Active Substrates with Increased Contribution of Long-Range Component of Raman Enhancement Created by High-Temperature Annealing of Thick Metal Films// Anal. Chem.- 1997.-V.69.-Р.3731-3740. 5. Schlegel V.L., Cotton T.M. Silver-island films as substrates for enchanced Raman scattering: effect of deposition rate on intensity// Anal. Chem.- 1991.- V.63, № 3.- P. 241-247. 6. Semin D.J., Rowlen K.L. Influence of vapor deposition parameters on SERS active Ag films morphology and optical properties// Anal. Chem.- 1994.- V.66, № 23.- P.4324-4331. 7. Van Duyne R.P., Hultee J.G., Treihel D.A. Atomic force microscopy and surface-enchanced Raman spectroscopy. I. Ag island films and Ag films over polymer nanosphere surfaces supported on glass// J. Chem. Phys.- 1993.- V.99, № 3.- P.2101-2115. 8. Шалаев В.М., Штокман М.И. Оптические свойства фрактальных кластеров (восприимчивость, гигантское комбинационное рассеяние на примесях) // ЖЭТФ.-1987.-Т.92.-С.509-521. 9. Schlegel V.L., Cotton T.M. Silver-island films as substrates for enchanced Raman scattering: effect of deposition rate on intensity// Anal. Chem.- 1991.- V.63, № 3.- P. 241-247. 10. Semin D.J., Rowlen K.L. Influence of vapor deposition parameters on SERS active Ag films morphology and optical properties// Anal. Chem.- 1994.- V.66, № 23.- P.4324-4331. 11. Van Duyne R.P., Hultee J.G., Treihel D.A. Atomic force microscopy and surface-enchanced Raman spectroscopy. I. Ag island films and Ag films over polymer nanosphere surfaces supported on glass// J. Chem. Phys.- 1993.- V.99, № 3.- P.2101-2115. 12. Feofanov A., Ianoul A., Kryukov E., Maskevich S., Vasilyuk G., Kivach L. and Nabiev I. Nondisturbing and Stable SERS-Active Substrates with Increased Contribution of Long-Range Component of Raman Enhancement Created by High-Temperature Annealing of Thick Metal Films// Anal. Chem.- 1997.-V.69.-Р.3731-3740. 13. Маскевич С.А., Свекло И.Ф., Феофанов А.В., Януль А.И., Олейников В.А., Громов С.П., Федорова О.А., Алфимов М.В., Набиев И.Р., Кивач Л.Н. ГКР-активные субстраты , полученные путем высокотемпературного отжига тонких серебряных пленок: сравнительное изучение с использованием атомно-силового микроскопа и ГКР спектроскопии // Оптика и спектр.-1996.-Т.81, №1.-С.95-102. 14. Dehong L., Zhiai C., Yongzhang L. Surface enchanced Raman scattering from microlithographic silver surfaces// Chinese Phys. Lasers.- 1987.- V.14.- P.429-434. |
| |||||
|
Работы, похожие на Реферат: Морфологические характеристики ПС и их взаимосвязь с оптическими свойствами