Реферат: Физические основы явления выстрела
Название: Физические основы явления выстрела Раздел: Рефераты по физике Тип: реферат | |
В некотором приближении поведение пороховых газов можно описать с помощью уравнения Менделеева ¾ Клапейрона. Это позволяет качественно проанализировать явление выстрела и построить графики зависимости давления газа p скорости пули v от пути l , проходимого ею в канале ствола (см. Рис.). Рассмотрим, как происходит процесс выстрела. Его длительность можно условно разделить на такие последовательные периоды: предварительный ¾ от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола; первый ¾ от начала движения пули по стволу до полного сгорания порохового заряда; второй ¾ от момента полного сгорания порохового заряда до момента вылета пули из ствола; третий ¾ от момента вылета пули до прекращения возрастания её скорости. Рассмотрим, как меняется давление порохового газа при выстреле (кривая I на рис.). Предварительный период. Во время горения заряда образуется пороховой газ. Давление его можно выразить формулой: (1) где Т, V и m ¾ соответственно температура, объём и масса порохового газа, М ¾ его молярная масса, R ¾ универсальная газовая постоянная. Поскольку объём газа не меняется, а температура и масс резко увеличиваются, давление газа будет расти по закону: , где С ¾ постоянная величина. Давление пороховых газов будет возрастать до тех пор, пока пуля не сдвинется с места. Первый период. Его условно можно разделить на три полпериода. Рассмотрим их поочерёдно. 1. Масса порохового газа m возрастает быстрее, чем объём V запульного пространства (объём, заключённый между дном пули и дном гильзы). Учитывая, что (S ¾ площадь сечения канала ствола, l ¾ путь пули в канале ствола), изменение давления газа в первый подпериод можно представить графически в виде участка 1-2 кривой I. 2. Скорость возрастания массы порохового газа становится близкой к скорости движения пули, или, что одно и то же, к скорости изменения объёма V . Тогда формула (1) принимает вид , где С1 ¾ постоянная величина. Графически изменение давления в этот подпериод можно представить в виде участка 3-4 кривой I. 3. Объём V запульного пространства вследствие быстрого увеличения скорости пули растёт гораздо быстрее массы m притока порохового газа, и изменением массы можно пренебречь. Тогда формула (1) примет вид: , где С2 ¾ постоянная величина. Изменение давления газа в этот подпериод можно представить в виде участка 5-6 кривой I. Промежуточные процессы между подпериодами можно приближённо изобразить соответствующими участками 2-3 и 4-5 кривой I. Второй период. Так как весь пороховой заряд уже сгорел, масса газа не меняется. Тогда формула (1) принимает вид , где С3 ¾ постоянная величина. Изменение давления можно представить участком 6-7 кривой I. Третий период. Часть газа вырывается из канала ствола вслед за пулей, при встрече с воздухом образует пламя и ударную волну. Следовательно, масса газа m уменьшается. Так как при этом увеличивается объём газа, то, согласно формуле (1), происходит резкое падение давления газа (участок 7-8 кривой I). Это уменьшение происходит до тех пор, пока давление порохового газа на дно пули не уравновесится сопротивлением воздуха. График изменения скорости пули в канале ствола (кривая II на рис.) можно построить, если предположить, что сила, действующая на пулю со стороны пороховых газов, много больше силы сопротивления, силы трения и т. д. В предварительный период скорость пули не меняется. В остальные периоды ускорение пули пропорционально давлению. Действительно, на пулю действует сила: , где p ¾ давление порохового газа, S ¾ площадь сечения канала ствола. Следовательно, если масса пули m , то её ускорение . Поскольку давление газа в канале ствола во все периоды много больше атмосферного, ускорение пули будет больше нуля, т. е. Она будет двигаться ускоренно. В первый подпериод ускорение увеличивается, следовательно, скорость пули будет резко возрастать. Графически это изменение скорости можно представить в виде участка 1-2 кривой II. Во второй подпериод ускорение почти не изменяется, поэтому движение пули будет близким к равноускоренному (участок 3-4 кривой II). В третий подпериод ускорение пули уменьшается, но остаётся положительным, следовательно, прирост скорости пули уменьшается (участок 5-6 кривой II). Во второй и третий периоды происходит дальнейшее уменьшение ускорения, что соответствует уменьшению прироста скорости (участок 7-8 кривой II). Можно исследовать начальную скорость пули с помощью законов сохранения. Начальной скоростью пули называется та скорость, с которой она покидает канал ствола. Закон сохранения энергии для явления выстрела можно записать так: . (2) Здесь Е1 ¾ энергия, выделяющаяся при сгорании пороха, Е2 ¾ кинетическая энергия пули в момент вылета из канала ствола, Е3 ¾ кинетическая энергия стрелкового оружия, Е4 ¾ энергия, уносимая выброшенными пороховыми газами, идущая на нагревание ствола, и т. д. Очевидно, (3) (q ¾ теплота сгорания пороха, m1 ¾ его масса); (4) (m2 ¾ масса пули, V ¾ её скорость в момент вылета из ствола); (5) (m3 ¾ масса оружия, u ¾ скорость отдачи при выстреле), причём, поскольку согласно закону сохранения импульса, , выражение (5) можно записать в виде: . (6) Энергия Е4 зависит прежде всего от длины ствола l . При малой длине много энергии будет выбрасываться наружу, при слишком большой окажутся значительными потери энергии на нагревание ствола и преодоление сил сопротивления, действующих на пулю в его канале. Следовательно, важно выбрать некоторую оптимальную длину ствола, при которой энергия Е4 будет минимальной. Учитывая (3)-(6) и приведённые выше рассуждения, выражение (2) можно переписать в виде: . Откуда начальная кинетическая энергия пули: . С помощью этой формулы легко доказать следующие утверждения: · начальная скорость пули зависит от длины ствола, массы пули, массы порохового заряда и от других факторов; · чем длиннее ствол (до известных пределов), тем дольше действует на пулю пороховой газ и тем больше её начальная скорость; · при постоянных длине ствола и массе порохового заряда начальная скорость пули тем больше, чем меньше её масса. Можно сказать, что скорость пули зависит и от массы стрелкового оружия. |