Реферат: Модель прогнозирования параметров финансовых рынков и оптимального управления инвестиционными портфелями
Название: Модель прогнозирования параметров финансовых рынков и оптимального управления инвестиционными портфелями Раздел: Рефераты по экономико-математическому моделированию Тип: реферат | ||||||||||
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МОДЕЛЬ ПРОГНОЗИРОВАНИЯ ПАРАМЕТРОВ ФИНАНСОВЫХ РЫНКОВ И ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ИНВЕСТИЦИОННЫМ ПОРТФЕЛЕМ. Выполнил: Проверил: г.Пермь 2000. Построение математической модели прогнозирования поведения является трудной задачей в связи с сильным влиянием политических и других проблем (выборы, природные катаклизмы, спекуляции крупных участников рынка…). В основе модели лежит анализ некоторых критериев с последующим выводом о поведении доходности и ценовых показателей. В набор критериев входят различные макро- и микроэкономические показатели, информация с торговых площадок, экспертные оценки специалистов. Процедура прогнозирования состоит из этапов: 1. Подготовка и предварительная фильтрация данных; 2. Аппроксимация искомой зависимости линейной функцией; 3. Моделирование погрешности с помощью линейной сети. Но для повышения точности модели практикуется нелинейный анализ с использованием многослойной однородной нейронной сети. Этапы проведения нелинейного анализа в системе совпадают со стандартными шагами при работе с нейросетями. 1-й этап . Подготовка выходных данных. Выходными данными являются zi = yi -pi , где yi - реальное значение прогнозируемой величины на некоторую дату, pi - рассчитанное на эту дату с помощью линейного анализа. 2-й этап . Нормирование входных сигналов. (1) где xi j - j-я координата некоторого критерия Xi , M[Xi ] - выборочная оценка среднего квадратичного отклонения. 3-й этап . Выбор функции активации и архитектуры нейронной сети. Используются функции активации стандартного вида (сигмоидная, ступенчатая), а также следующего вида: (2) (3) (4) (5) Архитектура нейронной сети представлена на рисунке:
вектор входных
выходн.
входных сигналов Введены следующие обозначения: Sj - линейные сумматоры; fj - нелинейные функции; используемые для аппроксимации; S - итоговый сумматор. 4-й этап. Выбор алгоритма обучения нейронной сети, основанного на одном из следующих методов: обратного распространения ошибки, градиентного спуска, метода сопряженных градиентов, методе Ньютона, квазиньютоновском. Методы оцениваются по времени, затрачиваемому на обучение и по величине погрешности. 5-й этап. Итоговые вычисления границ прогнозируемого значения: P=P лин +Рнелин ± Енелин где Р — итоговое прогнозируемое значение, Рлин и Рнелин значение линейного и нелинейного анализов. Енелин — погрешность полученная на этапе нелинейного анализа. Результаты задачи прогнозирования используются в построенной на ее основе задаче оптимального управления инвестиционным портфелем. В основе разработанной задачи управления идея минимизации трансакционных издержек по переводу портфеля в класс оптимальных. Используемый поход основан на предположениях, что эффективность инвестирования в некий набор активов является реализацией многомерной случайной величины, математическое ожидание которой характеризует доходность ( m={mi }i=1..n , где mi =M[Ri ], i=1..n ) , матрица ковариаций — риск ( V=(Vij ), i,j=1..n, где Vij =M[(Ri -mi )(Rj -mj )],i,j=1..n ) . Описанные параметры (m,V) представляют собой оценку рынка и являются либо прогнозируемой величиной, либо задаются экспертно. Каждому вектору Х , описывающему относительное распределение средств в портфеле, можно поставить в соответствие пару оценок: mx =(m,x), Vx =(Vx,x) . Величина mx представляет собой средневзвешенную доходность портфеля, распределение средств в котором описывается вектором Х величина V х (вариация портфеля [3,5]) является количественной характеристикой риска портфеля х . Введем в рассмотрение оператор Q , действующий из пространства Rn в пространство R2 (критериальная плоскость [3]), который ставит в соответствие вектору х пару чисел ( mx , Vx ) : Q: Rn-R2 Û " x Ì Rn , x ® ((m,x),(Vx,x)). (7) В задаче управления допустимыми считаются только стандартные портфели, т.е. так называемые портфели без коротких позиций. Правда это накладывает на вектор х два ограничения: нормирующее условие (е,х)=1 , где е – единичный вектор размерности n, и условие неотрицательности доли в портфеле, х >=0 . Точки удовлетворяющие этим условиям образуют dв пространствеRn так называемый стандартный (n-1)-мерный симплекс. Обозначим его D . D ={x Ì Rn ½ (e,x)=1, x ³ 0} Образом симплекса в критериальной плоскости будет являться замкнутое ограниченное множество оценок допустимых портфелей. Нижняя граница этого множества представляет собой выпуклую вниз кривую, которая характеризует Парето – эффективный с точки зрения критериев выбор инвестора (эффективная граница [3], [5]). Прообразом эффективной границы в пространстве Rn будет эффективное множество портфелей [5]. Обозначим его как y . Данное множество является выпуклым: линейная комбинация эффективных портфелей также представляет собой эффективный портфель [3]. Пусть в некоторый момент времени у нас имеется портфель, распределение средств в котором описывается вектором х . Тогда задачу управления можно сформулировать в следующем виде: найти такой элемент y , принадлежащий y , что r (y,x) . Иными словами, для заданной точки х требуется найти ближайший элемент y , принадлежащий множеству Y . В пространстве Rn справедлива теорема, доказывающая существование и единственность элемента наилучшего приближения х элементами множества Y [6]. Метрика (понятие расстояния) может быть введена следующим образом: r (x,y)= a S i=1,n sup(yi -xi ,0)+ b S i=1..n sup(xi -yi ,0) , (9) где a >0 — относительная величина издержек при покупке, b >0 — относительная величина издержек при продаже актива. Литература 1. Сборник статей к 30-ти летию кафедры ЭК. ПГУ. 2. Ивлиев СВ Модель прогнозирования рынка ценных бумаг. 6-я Всероссийская студенческая конференция «Актуальные проблемы экономики России»: Сб.тез.докл. Воронеж, 2000. 3. Ивлиев СВ Модель оптимального управления портфелем ценных бумаг. Там же. |