Реферат: Полупроводниковый преобразователь тепловой энергии окружающей среды
Название: Полупроводниковый преобразователь тепловой энергии окружающей среды Раздел: Рефераты по науке и технике Тип: реферат |
Анатолий Зерний Проблема современной энергетики состоит в том, что производство электроэнергии – источник материальных благ человека находится в губительном противостоянии с его средой обитания – природой и как результат этого – неизбежность экологической катастрофы. Поиск и открытие альтернативных экологически чистых способов получения электроэнергии – актуальнейшая задача человечества. Одним из источников энергии, является природная окружающая среда: воздух атмосферы, воды морей и океанов, которые содержат огромное количество тепловой энергии, получаемой от Солнца. Рассмотрим для примера изолированный кристалл собственного полупроводника, который легирован (см. рис.1) донорной примесью вдоль оси X по экспоненциальному закону Nд (x) = f (ekx ). Рис. 1. Кристалл полупроводника легированый донорной примесью Левая часть кристалла (X0 ) легируется до такой концентрации Nдмакс , чтобы уровень Ферми находился у дна зоны проводимости полупроводника, а правая часть кристалла (Xк ) легируется до минимально возможной концентрации Nдмин , чтобы уровень Ферми находился посредине запрещенной зоны полупроводника, при заданной температуре. Основными носителями заряда, в данном случае, являются электроны (n). Для простоты рассуждений, неосновными носителями – дырками (р) пренебрегаем из-за малой их концентрации. В некоторый условный начальный момент, когда закон распределения концентрации электронов совпадает с законом распределения донорной примеси (n=Nд ), кристалл в целом является электрически нейтральным и в каждом его элементарном объеме выполняется условие np=ni 2 , а вдоль оси X существует положительный градиент концентрации (см. рис.2) основных носителей – электронов dn/dx>0. Рис. 2. Закон распределения концентрации основных носителей в кристалле Под действием сил теплового движения и в результате наличия градиента концентрации, электроны начинают диффундировать в кристалле вдоль оси X из области высокой их концентрации (X0 ) в область низкой концентрации (Xк ), в результате – электронейтральность кристалла нарушается. Электроны, движущиеся слева направо, оставляют после себя положительно заряженные ионы донорной примеси Nд + . Эти ионы, жестко связанные с кристаллической решеткой полупроводника, образуют в левой части кристалла неподвижный положительный объемный заряд, а электроны, перешедшие в правую часть кристалла, образуют отрицательный объемный заряд равной величины, в результате чего в объеме кристалла полупроводника вдоль оси X образуется постоянное по величине электрическое поле Eх (см. рис.3). Рис. 3. Распределение объемных зарядов в кристалле Силы электрического поля будут стремиться возвращать электроны в ту область кристалла, откуда они диффундировали. Те электроны, энергия которых недостаточна для преодоления сил электрического поля, будут возвращаться – дрейфовать в электрическом поле в направлении, противоположном процессу диффузии. Таким образом, в кристалле полупроводника вдоль оси X текут два встречно направленных тока: Jдиф. – ток диффузии, Jдр. – ток дрейфа. В процессе образования электрического поля в кристалле в сторону увеличения его напряженности, диффузионный ток уменьшается вследствие снижения градиента концентрации электронов, а дрейфовый ток увеличивается за счет увеличения количества электронов, возвращаемых растущим полем в обратную сторону, что в конечном итоге приводит к выравниванию этих токов Jдиф. =Jдр. и установлению в объеме кристалла электрического и термодинамического равновесия. Плотность тока диффузии: Jдиф. = –qn D(dn/dx). Плотность тока дрейфа: Jдр. = μnqn Ex . Суммарный ток в кристалле: Jk = Jдр. + Jдиф. = μnqn Ex – qn D(dn/dx) = 0. Исходя из вышеизложенного, напряженность электрического поля в кристалле: Ex = (kT / qn ) K, где: k – постоянная Больцмана, T – абсолютная температура кристалла, qn – заряд основных носителей, K – показатель экспоненты распределения примеси. Таким образом, неоднородное распределение донорной примеси Nд вдоль оси X кристалла полупроводника по экспоненциальному закону приводит к образованию в объеме кристалла полупроводника постоянного по величине электрического поля, величина напряженности которого Ex не зависит от координаты X, а определяется только величиной абсолютной температуры T кристалла и показателем K экспоненты распределения донорной примеси. При этом один конец полупроводника (X0 ) окажется заряженным положительно по отношению к другому концу полупроводника (Xk ). В этом случае, при заданной температуре, диаграмма энергетических зон в полупроводнике вдоль оси X приобретает следующий вид (см. рис.4) Рис. 4. Диаграмма энергетических зон ΔEс – высота потенциального барьера между концами полупроводникового кристалла, φk – разность потенциалов между концами полупроводникового кристалла, α – угол наклона энергетических зон. tgα = qn Ex . Это означает, что между противоположными концами полупроводникового кристалла существует разность потенциалов, φk а значит, развивается ЭДС (холостого хода). ЭДС, выраженная в Вольтах будет по величине численно равна половине ширины запрещенной зоны полупроводника: ЭДС = (Ec – Ev ) / 2 [B]. Например, для германия ЭДСGе = 0,35В, для кремния ЭДСSi = 0,55В при температуре 293ºК. Если замкнуть разноименные концы полупроводникового кристалла металлическим проводником с сопротивлением R, то в цепи потечет электрический ток JR , и как следствие в кристалле нарушится электрическое и термодинамическое равновесие, а именно: электроны уйдут с правого конца кристалла и перейдут в левый конец кристалла через проводник, чем будет увеличен градиент концентрации электронов, а значит ток диффузии Jдиф. . увеличится, а ток дрейфа Jдр. уменьшится, так как уменьшится напряженность электрического поля Eх . Ток JR в проводнике будет составлять разницу между токами диффузии Jдиф. и дрейфа Jдр. : JR = Jдиф. – Jдр. . При увеличении тока диффузии электроны будут отбирать тепловую энергию от кристаллической решетки полупроводника, вследствие преодоления ими потенциального барьера ΔЕс , в результате чего кристалл будет охлаждаться. Для поддержания постоянного тока в цепи нагрузки необходимо непрерывно подводить к кристаллу теплоту Q от окружающей среды (воздух, вода и т.п., см. рис.5). Рис. 5. Электрическая схема полупроводникового преобразователя Аналогичные рассуждения и выводы можно сделать при легировании кристалла полупроводника акцепторной примесью (Na ) или встречно легировать донорной и акцепторной примесями (Nд – Na ). |