Реферат: Тезис Гьоделя. Теорема Черча
Название: Тезис Гьоделя. Теорема Черча Раздел: Рефераты по математике Тип: реферат |
Реферат з дисципліни «Теория алгоритмів та представлення знань» Виконав студент 3-го курсу 36 групи Левицький Е.Г. Європейський Університет Уманська філія Кафедра математики та інформатики Умань – 2005 Введение понятия машины Тьюринга уточняет понятие алгоритма и указывает путь решения какой-то массовой проблемы. Однако машина Тьюринга бывает неприменима к начальной информации (исходному слову алфавита). Та же ситуация повторяется относительно некоторых задач, для решения которых не удается создать машины Тьюринга. Один из первых результатов такого типа получен Черчем в 1936 году. Он касается проблемы распознавания выводимости в математической логике. 1). Аксиоматический метод в математике заключается в том, что все теоремы данной теории получаются посредством формально-логического вывода из нескольких аксиом, принимаемых в данной теории без доказательств. Например, в математической логике описывается специальный язык формул, позволяющий любое предложение математической теории записать в виде вполне определенной формулы, а процесс логического вывода из посылки следствия может быть описан в виде процесса формальных преобразований исходной формулы. Это достигается путем использования логического исчисления, в котором указана система допустимых преобразований, изображающих элементарные акты логического умозаключения, из которых складывается любой , сколь угодно сложный формально-логический вывод. Вопрос о логической выводимости следствия из посылки является вопросом о существовании дедуктивной цепочки, ведущей от формулы к формуле . В связи с этим возникает проблема распознавания выводимости: существует ли для двух формул и дедуктивная цепочка, ведущая от к или нет. Решение этой проблемы понимается в смысле вопроса о существовании алгоритма, дающего ответ при любых и . Черчем эта проблема была решена отрицательно. Теорема Черча. Проблема распознавания выводимости алгоритмически неразрешима. Проблема распознавания самоприменимости. Это вторая проблема, положительное решение которой не найдено до сих пор. Ее суть заключается в следующем. Программу машины Тьюринга можно закодировать каким-либо определенным шифром. На ленте машины можно изобразить ее же собственный шифр, записанный в алфавите машины. Здесь как и в случае обычной программы возможны два случая: 1. машина применима к своему шифру, то есть она перерабатывает этот шифр и после конечного числа тактов останавливается; 2. машина неприменима к своему шифру, то есть машина никогда не переходит в стоп - состояние. Таким образом, сами машины (или их шифры) разбиваются на два класса: класс самоприменимых и класс несамоприменимых тьюринговых машин. Проблема заключается в следующем как по любому заданному шрифту установить к какому классу относится машина, зашифрованная им: к классу самоприменимых или несамоприменимых. Теорема 2. Проблема распознавания самоприменимости алгоритмически неразрешима. 3). Проблема эквивалентности слов для ассоциативных исчислений. Рассмотрим некоторый алфавит и множество слов в этом алфавите. Будем рассматривать преобразования одних слов в другие с помощью некоторых допустимых подстановок , где и два слова в том же алфавите Если слово содержит как подслово, например , то возможны следующие подстановк , , . Ассоциативным исчислением называется совокупность всех слов в некотором алфавите вместе с какой-нибудь конечной системой допустимых подстановок. Для задания ассоциативного исчисления достаточно задать соответствующий алфавит и систему подстановок. Если слово может быть преобразовано в слово путем однократного применения определенной подстановки, то и называются смежными словами. Последовательность слов таких, что каждая пара слов являются смежными, называется дедуктивной цепочкой, ведущей от слова к слову . Если существует цепочка, ведущая от слова к слову , то и называются эквивалентными: ~. Для каждого ассоциативного исчисления возникает своя специальная проблема эквивалентности слов: для любых двух слов в данном исчислении требуется узнать эквивалентны они или нет. Эта проблема решена лишь в некоторых ассоциативных исчислениях специального вида. Математические теории. Аксиоматические теории делятся на формальные и неформальные. Неформальные аксиоматические теории наполнены теоретико – множественным содержанием, понятие выводимости в них довольно расплывчато и в значительной степени опирается на здравый смысл. Формальная аксиоматическая теория считается определенной, если выполнены следующие условия: задан язык теории; определено понятие формулы в этой теории; выделено множество аксиом теории; определены правила вывода в этой теории. Среди математических теорий выделяются теории первого порядка. Эти теории не допускают в своем изложении предикаты, которые имеют в качестве аргументов другие предикаты и функции. Кроме того, не допускаются кванторные операции по предикатам и функциям. Теории первого порядка называются еще элементарными теориями. 1). Язык теории первого порядка. Рассмотрим некоторый алфавит теории Множество слов этого алфавита называется множеством выражений теории Пару , состоящую из алфавита и множества выражений, называют языком теории. В алфавит всякой теории первого порядка входят: символы логических операций символы кванторных операций вспомогательные символы – скобки и запятые; конечное или счетное множество - местных предикатных букв; конечное или счетное множество функциональных букв; конечное или счетное множество предметных констант. В частности под функциональной буквой может пониматься цепочка логических операций. Множество предикатных букв вместе с множеством функциональных букв и констант называется сигнатурой языка данной теории. Различные теории первого порядка могут отличаться друг от друга по составу букв в алфавите. Термы и формулы. В любой теории важное значение имеет определение терма и формулы. Фактически это два класса слов множества. Термом называется: а). предметная переменная и переменная константа; Таким образом, кроме предметных переменных и констант термами являются цепочки, образованные из предметных переменных и констант посредством символов операций. Примеры теорий первого порядка. 1). Геометрия (теория равенства отрезков). Логические аксиомы этой теории те же пять, что упомянутые выше. Первичные термины - множество всех отрезков и = - отношение равенства. 2). Аксиоматическая теория натуральных чисел. Аксиоматическое построение арифметики натуральных чисел связано с именами Пеано и Дедекинда. Язык теории содержит константу 0, числовые переменные, символ равенства, функциональные символы +, . , (прибавление единицы) и логические связки, то есть. Термы строятся из константы 0 и переменных с помощью функциональных символов. В частности натуральные числа изображаются термами вида 0. Элементарные формулы в этой теории – это равенства термов, остальные формулы получаются из элементарных с помощью логических связок. Вводится одна предикатная буква и три функциональных буквы. - отношение равенства, - отношение следования (прибавление единицы), - операция суммы, - операция произведения. В качестве специальных аксиом теории натуральных чисел берутся следующие аксиомы: где - произвольная формула теории натуральных чисел. Девятая аксиома называется принципом математической индукции. Аксиомы 1-2 обеспечивают очевидные свойства равенства, аксиомы 5-8 уточняют свойства операций сложения и умножения. Для произвольных теорий первого порядка теорема дедукции, доказанная нами в исчислении высказываний, требует изменения. В первоначальном виде, причем никаких ограничений на предметные переменные, входящие в, не накладывалось. Для справедливости теоремы дедукции для произвольных теорий первого порядка необходимо ее изменить следующим образом. Теорема Геделя о неполноте. В любой непротиворечивой формальной системе, содержащей минимум арифметики, а, следовательно, и в теории натуральных чисел, найдется формально неразрешимое суждение, то есть такая замкнутая формула , что ни , ни не являются выводимыми в системе. Пусть у нас есть некая формальная система T, т.е. некий набор аксиом, из которых мы, пользуясь фиксированных набором правил перехода и общелогических аксиом, можем доказывать какие-нибудь теоремы. Поставим несколько условий: пусть, во-первых, наша система T будет сформулирована на языке арифметики. Это значит, что формулы аксиом и теорем в T, кроме общелогических символов (таких, как переменные, скобки, ∧ "и", ¬ "не-" и прочие логические операции, знак равенства =, а также кванторы существования ∃ и всеобщности ∀) могут содержать такие символы, как 0 (константа), + (бинарная операция), * (ещё одна операция), < (отношение "меньше, чем"), S(x) (функция, обозначающая "следующий за x элемент", т.е. x+1). Во-вторых, пусть система T будет достаточно мощной, что в нашем случае значит, что она умеет доказывать некоторые достаточно простые формулы отношений между натуральными числами (подробности я опускаю). Например, если мы не внесём вообще никаких аксиом в T, то она ничего нетривиального не сможет доказать, т.е. будет недостаточно мощной и теорема Гёделя к ней относиться не будет. Но любой достаточно полный список аксиом арифметики (например, перечисляющий обычные тривиальные свойства операций умножения и сложения, отношения < и функции S(x)) оказывается достаточно мощным для наших целей. В-третьих, система T должна быть в некотором техническом смысле "легко описываемой" — в ней должно быть либо конечное количество аксиом, либо бесконечное, но описываемое с помощью какого-то заранее известного алгоритма. Любую формальную систему, отвечающую этим трём условиям, назовём подходящей (это не стандартная терминология, просто для удобства только в этой записи). Сказать, что какое-то утверждение доказуемо в T — значит сказать, что есть некоторое формальное доказательство, которое к нему приводит. Доказуемость — синтаксическое свойство, а не семантическое. С другой стороны, сказать, что какое-то утверждение истинно — значит, сказать, что если мы интерпретируем его согласно обычной интерпретации символов T (т.е. * будем понимать как "умножение", символ 0 — как число 0, итп.), то получаем истинное утверждение о натуральных числах. Доказуемость необязательно влечёт истинность. Предположим для простоты, что для каждого натурального числа n в нашем языке есть константа n, позволяющая "говорить" о числе n в формулах нашего языка (на практике мы можем "симулировать" такие константы, не объявляя их, с помощью цепочки терминов: 0, S(0), S(S(0)), S(S(S(0))) итп.). Теперь возьмём формальную систему T, в которой есть следующая аксиома: 2+2=5. Тогда утверждение Теперь мы можем определить три формулировки теоремы Гёделя о неполноте следующим образом: Во-вторых, теорема Гёделя о неполноте применима не только к формальным системам, сформулированным в языке арифметики (т.е. говорящим о натуральных числах), но также к бесчисленному множеству других формальных систем, от которых требуется только, чтобы они были "подходящими" в нужном техническом смысле; главное требование здесь — чтобы они были не менее мощными, чем теория T в языке арифметики, для которой мы собственно доказываем теорему Гёделя, а это требование обеспечивается возможностью интерпретировать T в такой новой теории. Например, формальная система ZFC, используемая для формализации теории множеств, а вместе с ней и практически всей современной математики, намного более мощна, чем какая-нибудь простенькая арифметическая T, для которой мы доказали теорему Гёделя этот факт можно строго описать (предъявив интерпретацию, т.е. способ перевести утверждения из языка T в утверждения языка ZFC, и показав, что ZFC тогда доказывает "перевод" всех аксиом T) и из него тогда будет следовать, что и ZFC тоже неполна, т.е. в ней тоже есть какое-то гёделево утверждение G, которое нельзя ни доказать, ни опровергнуть. Проблема, однако, в том, что в отличие от арифметических формальных систем, для утверждений которых у нас всегда есть удобный и обычный способ определить их истинность (посмотреть на то, верны ли они как утверждения о натуральных числах), для других формальных систем, таких, скажем, как ZFC, понятие истинности вообще не определено или определено очень плохо. Для них первая и вторая версии теоремы Гёделя оказываются неподходящими именно потому, что эти версии опираются на корректность данной системы и на существование определённого понятия истинности утверждений. Подходит только третья, чисто синтаксическая версия. 1. www.intuit.ru 2. www.proza.ru 3. www.referat.ru |