Реферат: Вязкость газов в вакуумной технике
Название: Вязкость газов в вакуумной технике Раздел: Рефераты по математике Тип: реферат | |||||||||||||||||||||||||||||||||
При перемещение твердого тела со скоростью за счет передачи количества движения молекулам газа возникает сила внутреннего трения В области низкого вакуума весь газ между подвижной 2 и неподвижной 1 пластинами ( рис 1 ) можно разделить на слои толщиной , где – средняя длина свободного пути . Скорость движения каждого слоя различна и линейно зависит от расстояния между поверхностями переноса . В плоскости происходят столкновения молекул , вылетевших из плоскостей и . Причиной возникновения силы вязкостного трения является , то что движущиеся как единое целое отдельные слои газа имеют разную скорость , вследствие чего происходит перенос количества движения из одного слоя в другой . Изменение количества движения в результате оного столкновения равно . Принимая , что в среднем в отрицательном и положительном направление оси в единицу времени единицу площади в плоскости пересекают молекул получим общее изменение количества движения в единицу времени для плоскости : ( 1 ) . Сила трения по всей поверхности переноса , согласно второму закону Ньютона , определяется общим изменение количества движения в единицу времени : ( 2 ), где – площадь поверхности переноса ; – коэффициент динамической вязкости газа : ( 3 ) Отношение называют коэффициентом кинематической вязкости Более строгий вывод , в котором учтен закон распределения скоростей и длин свободного пути молекул , дает , что мало отличается от приближенного значения Если в ( 3 ) подставить значения зависящих от давления переменных , то . ( 7 ) Согласно полученному выражению , коэффициент динамической вязкости при низком вакууме не зависит от давления . Температурную зависимость коэффициента вязкости можно определить . если подставить в ( 3 ) и соответственно из формул : ( 6 ) и в формулу ( 3 ) . Отсюда имеем : ( 4 ) В соответствие с ( 4 ) зависит от , где изменяется от ½ при высоких температурах до при низких температурах при . Во всех случаях коэффициент динамической вязкости увеличивается при повышение температуры газа . Значения коэффициентов динамической вязкости для некоторых газов при даны в таблице .
Для двухкомпонентной смеси коэффициент динамической вязкости рассчитывается по формуле : , где ; ; ; ; и находят из формулы . Величина в этом случае зависит от состава газовой смеси . В области высокого вакуума молекулы газа перемещаются между движущейся поверхностью и неподвижной стенкой без соударения . В этом случае силу трения можно рассчитать по уравнению : ( 5 ) Знак « – » в формуле ( 5 ) означает , что направление силы трения противоположно направлению переносной скорости . Сила трения в области высокого вакуума пропорциональна молекулярной концентрации или давлению газа . Уравнение ( 5 ) с учетом ( 6 ) можно преобразовать к следующему виду : , ( 9 ) откуда видно , что сила трения возрастает пропорционально корню квадратному из абсолютной температуры . В области среднего вакуума можно записать аппроксимирующее выражение . рассчитывая градиент переносной скорости в промежутке между поверхностями переноса по следующей формуле : , где – расстояние между поверхностями переноса . Тогда с учетом ( 7 ) сила трения в области среднего вакуума : ( 8 ). Легко заметить , что в условиях низкого вакуума при формула ( 8 ) с ( 2 ) , а в условиях высокого вакуума при с (9) . Зависимость от давления силы трения тонкой пластины площадью , движущейся в воздухе при со скоростью , при расстояние между поверхностями переноса показана на рис 2 . Вязкость газов используется для измерения давлений в области среднего и высокого вакуума , однако вязкостные манометры не получили пока широкого применения из-за длительности регистрации давления . Гораздо шире явление вязкости используется в технологии получения вакуума . На этом принципе работают струйные эжекторные насосы , выпускаемые промышленностью для работы в области низкого вакуума . При , , , , . Л.Н. Розанов . Вакуумная техника . Москва « Высшая школа » 1990 . |