Курсовая работа: Вычисления определенного интеграла с помощью ф. – лы Симпсона на компьютере

Название: Вычисления определенного интеграла с помощью ф. – лы Симпсона на компьютере
Раздел: Рефераты по информатике, программированию
Тип: курсовая работа

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

КУРСОВАЯ РАБОТА

«Программа приближенного вычисления определенного интеграла с помощью ф – лы Симпсона на компьютере»

Выполнил:

студент ф – та ЭОУС – 1 – 12

Валюгин А. С.

Принял:

Зоткин С. П.

Москва 2001

1. Введение

Определенный интеграл от функции, имеющей неэлементарную первообразную, можно вычислить с помощью той или иной приближенной формулы. Для решения этой задачи на компьютере, среди прочих, можно воспользоваться формулами прямоугольников, трапеций или формулой Симпсона. В данной работе рассматривается именно последняя.

Рассмотрим функцию y = f(x). Будем считать, что на отрезке [a, b] она положительна и непрерывна. Найдем площадь криволинейной трапеции aABb (рис. 1).

рис. 1

Для этого разделим отрезок [a, b] точкой c = (a + b) / 2 пополам и в точке C(c, f(c)) проведем касательную к линии y = f(x). После этого разделим [a, b] точками p и q на 3 равные части и проведем через них прямые x = p и x = q. Пусть P и Q – точки пересечения этих прямых с касательной. Соединив A с P и B с Q, получим 3 прямолинейные трапеции aAPp, pPQq, qQBb. Тогда площадь трапеции aABb можно приближенно посчитать по следующей формуле

I » (aA + pP) / 2 * h + (pP + qQ) / 2 * h + (qQ + bB) / 2 * h, гдеh = (b – a) / 3.

Откуда получаем

I » (b – a) / 6 * (aA + 2 * (pP + qQ) + bB)

заметим, что aA = f(a),bB = f(b),а pP + qQ = 2 * f(c), в итоге получаем малую фор – лу Симпсона

I » (b – a) / 6 * (f(a) + 4 * f(c) + f(b)) (1)


Малая формула Симпсона дает интеграл с хорошей точностью, когда график подинтегральной функции мало изогнут, в случаях же, когда дана более сложная функция малая формула Симпсона непригодна. Тогда, чтобы посчитать интеграл заданной функции нужно разбить отрезок [a, b] на n частей и к каждому из отрезков применить формулу (1). После указанных выше действий получится “большая” формула Симпсона, которая имеет вид,

I » h / 3 * (Y кр + 2 * Y неч + 4 * Y чет ) (2)

где Yкр = y1 + yn,Yнеч = y3 + y5 + … + yn – 1, Yчет = y2 + y4 + … + yn – 2,а h = (b – a) / n.

Задача. Пусть нужно проинтегрировать функцию f(x) = x³(x - 5)² на отрезке [0, 6](рис. 2). На этом отрезке функция непрерывна и принимает только неотрицательные значения, т. е. знакопостоянна.

рис. 2

Для выполнения поставленной задачи составлена нижеописанная программа, приближенно вычисляющая определенный интеграл с помощью формулы Симпсона. Программа состоит из трех функций main, f и integral. Функция main вызывает функцию integral для вычисления интеграла и распечатывает на экране результат. Функция f принимает аргумент x типа float и возвращает значение интегрируемой функции в этой точке. Integral – основная функция программы: она выполняет все вычисления, связанные с нахождением определенного интеграла. Integral принимает четыре параметра: пределы интегрирования типа float, допустимую относительную ошибку типа float и указатель на интегрируемую функцию. Вычисления выполняются до тех пор, пока относительная ошибка, вычисляемая по формуле

| (In/2 – In) / In | ,

где In интеграл при числе разбиений n, не будет меньше требуемой. Например, допустимая относительная ошибка e = 0.02 это значит, что максимальная погрешность в вычислениях будет не больше, чем In * e = 0.02 * In. Функция реализована с экономией вычислений, т. е. учитывается, что Yкр постоянная, а Yнеч = Yнеч + Yчет, поэтому эти значения вычисляются единожды. Высокая точность и скорость вычисления делают использование программы на основе формулы Симпсона более желательным при приближенном вычислении интегралов, чем использование программ на основе формулы трапеции или метода прямоугольников.

Ниже предлагается блок – схема, спецификации, листинг и ручной счет программы на примере поставленной выше задачи. Блок – схема позволяет отследить и понять особенности алгоритма программы, спецификации дают представление о назначении каждой переменной в основной функции integral, листинг - исходный код работающей программы с комментариями, а ручной счет предоставляет возможность проанализировать результаты выполнения программы.

2. Блок – схема программы


ДА


НЕТ


3. Спецификации

Имя переменной Тип Назначение
n int Число разбиений отрезка [a, b]
i int Счетчикциклов
a float Нижний предел интегрирования
b float Верхний предел интегрирования
h float Шаг разбиения отрезка
e float Допустимая относительная ошибка
f float (*) Указатель на интегрируемую фун - цию
s_ab float Сумма значений фун – ции в точках a и b
s_even float Сумма значений фун – ции в нечетных точках
s_odd float Сумма значений фун – ции в четных точках
s_res float Текущий результат интегрирования
s_pres float Предыдущий результат интегрирования

4. Листинг программы

#include <stdio.h>

#include <math.h>

/* Прототип фун – ции, вычисляющей интеграл */

float integral(float, float, float, float (*)(float));

/* Прототип фун – ции, задающей интегрируемую фун – цию */

float f(float);

main()

{

float result;

result = integral(0, 6, .1, f);

printf("%f", result);

return 0;

}

/* Реализация фун – ции, задающей интегрируемую фун – цию */

float f(float x)

{

/* Функция f(x) = x³(x - 5)² */

return pow(x, 3) * pow(x - 5, 2);

}

/* Реализация фун – ции, вычисляющей интеграл */

float integral(float a, float b, float e, float (*f)(float))

{

intn = 4, i; /* Начальное число разбиений 4 */

floats_ab = f(a) + f(b); /* Сумма значений фун – ции в a и b */

float h = (b – a) / n; /* Вычисляемшаг */

float s_even = 0, s_odd;

float s_res = 0, s_pres;

/* Сумма значений фун – ции в нечетных точках */

for (i = 2; i < n; i += 2) {

s_even += f(a + i * h);

}

do {

s_odd = 0;

s_pres = s_res;

/* Сумма значений фун – ции в четных точках */

for (i = 1; i < n; i += 2) {

s_odd += f(a + i * h);

}

/* Подсчет результата */

s_res = h / 3 * (s_ab + 2 * s_even + 4 * s_odd);

/* Избегаем деления на ноль */

if (s_res == 0) s_res = e;

s_even += s_odd;

n *= 2;

h /= 2;

} while (fabs((s_pres - s_res) / s_res) > e);/* Выполнять до тех пор, пока результат не будет удовлетворять допустимой ошибке */

returnfabs(s_res); /* Возвращаем результат */

}

5. Ручной счет

Таблица константных значений для n = 8

Имя переменной Значение
a 0
b 6
e .1
s_ab 216
h .75

Подсчет s_even

i a + i * h f(a + i * h) s_even
2 1.5 41.34375 41.34375
4 3 108 149.34375
6 4.5 22.78125 172.125

Подсчет s_odd

i a + i * h f(a + i * h) s_odd
1 .75 7.62012 7.62012
3 2.25 86.14158 93.7617
5 3.75 82.3973 176.159
7 5.25 9.044 185.203

Подсчет s_res

ò f(x) dx s_res = h / 3 * (s_ab + 2 * s_even + 4 * s_odd) Абсолютная ошибка
324 325.266 1.266