Реферат: The Real Hello World
Название: The Real Hello World Раздел: Рефераты по информатике, программированию Тип: реферат |
В этой статье мы напишем... собственную мини-ОС. Да да, создадим свою собственную операционную систему. Правда система будет грузиться с дискеты и выводить знакомое Hello World, но согласитесь, это произведет впечатление и на вас, и на ваших друзей. Ведь именно Вы создадите СВОЮ мини-ОС. 1. Идея (hello.c) Изучение нового языка программирования начинается, как правило, с написания простенькой программы, выводящей на экран краткое приветствие типа "Hello World!". Например, для C это будет выглядить приблизительно так. main() { printf("Hello World!\n"); } Показательно, но совершенно не интересно. Программа, конечно работает, режим защищенный, но ведь для ее функционирования требуется ЦЕЛАЯ операционная система. А что если написать такой "Hello World", для которого ничего не надо. Вставляем дискетку в компьютер, загружаемся с нее и ..."Hello World". Можно даже прокричать это приветствие из защищенного режима. Сказано - сделано. С чего бы начать?.. Набраться знаний, конечно. Для этого очень хорошо полазить в исходниках Linux и Thix. Первая система всем хорошо знакома, вторая менее известна, но не менее полезна. Подучились? ... Понятно, что сперва надо написать загрузочный сектор для нашей мини-опрерационки (а ведь это именно мини-операционка). Поскольку процессор грузится в 16-разрядном режиме, то для созджания загрузочного сектора используется ассемблер и линковщик из пакета bin86. Можно, конечно, поискать еще что-нибудь, но оба наших примера используют именно его и мы тоже пойдет по стопам учителей. Синтаксис этого ассемблера немколько странноватый, совмещающий черты, характерные и для Intel и для AT&T (за подробностями направляйтесь в Linux-Assembly-HOWTO), но после пары недель мучений можно привыкнуть. 2. Загрузочный сектор (boot.S) Сознательно не буду приводить листингов программ. Так станут понятней основные идеи, да и вам будет намного приятней, если все напишите своими руками. Для начала определимся с основными константами. START_HEAD = 0 - Головка привода, которою будем использовать. START_TRACK = 0 - Дорожка, откуда начнем чтение. START_SECTOR = 2 - Сектор, начиная с которого будем считывать наше ядрышко. SYSSIZE = 10 - Размер ядра в секторах (каждый сектор содержит 512 байт) FLOPPY_ID = 0 - Идентификатор привода. 0 - для первого, 1 - для второго HEADS = 2 - Количество головок привода. SECTORS = 18 - Количество дорожек на дискете. Для формата 1.44 Mb это количество равно 18. В процессе загрузки будет происходить следующее. Загрузчик BIOS считает первый сектор дискеты, положит его по адресу 0000:0x7c00 и передаст туда управление. Мы его получим и для начала переместим себя пониже по адресу 0000:0x600, перейдем туда и спокойно продолжим работу. Собственно вся наша работа будет состоять из загрузки ядра (сектора 2 - 12 первой дорожки дискеты) по адресу 0x100:0000, переходу в защищенный режим и скачку на первые строки ядра. В связи с этим еще несколько констант: BOOTSEG = 0x7c00 - Сюда поместит загрузочный сектор BIOS. INITSEG = 0x600 - Сюда его переместим мы. SYSSEG = 0x100 - А здесь приятно расположится наше ядро. DATA_ARB = 0x92 - Определитель сегмента данных для дескриптора CODE_ARB = 0x9A - Определитель сегмента кода для дескриптора. Первым делом произведем перемещение самих себя в более приемлемое место. cli xor ax, ax mov ss, ax mov sp, #BOOTSEG mov si, sp mov ds, ax mov es, ax sti cld mov di, #INITSEG mov cx, #0x100 repnz movsw jmpi go, #0 ; прыжок в новое местоположение загрузочного сектора на метку go Теперь необходимо настроить как следует сегменты для данных (es, ds) и для стека. Это конечно неприятно, что все приходится делать вручную, но что делать. Ведь нет никого в памяти компьютера, кроме нас и BIOS. go: mov ax, #0xF0 mov ss, ax mov sp, ax ; Стек разместим как 0xF0:0xF0 = 0xFF0 mov ax, #0x60 ; Сегменты для данных ES и DS зададим в 0x60 mov ds, ax mov es, ax Наконец можно вывести победное приветствие. Пусть мир узнает, что мы смогли загрузиться. Поскольку у нас есть все-таки еще BIOS, воспользуемся готовой функцией 0x13 прерывания 0x10. Можно конечно презреть его и написать напрямую в видеопамять, но у нас каждый байт команды на счету, а байт таких всего 512. Потратим их лучше на что-нибудь более полезное. mov cx,#18 mov bp,#boot_msg call write_message Функция write_message выгдядит следующим образом write_message: push bx push ax push cx push dx push cx mov ah,#0x03 ; прочитаем текущее положение курсора, дабы не выводить сообщения где попало. xor bh,bh int 0x10 pop cx mov bx,#0x0007 ; Параметры выводимых символов : видеостраница 0, аттрибут 7 (серый на черном) mov ax,#0x1301 ; Выводим строку и сдвигаем курсор. int 0x10 pop dx pop cx pop ax pop bx ret А сообщение так boot_msg: .byte 13,10 .ascii "Booting data ..." .byte 0 К этому времени на дисплее компьютера появится скромное "Booting data ..." . Это в принципе уже "Hello World", но давайте добьемся чуточку большего. Перейдем в защищенный режим и выведем этот "Hello" уже из программы написаной на C. Ядро 32-разрядное. Оно будет у нас размещаться отдельно от загрузочного сектора и собираться уже gcc и gas. Синтаксис ассемблера gas соответсвует требованиям AT&T, так что тут уже все проще. Но для начала нам нужно прочитать ядро. Опять воспользуемся готовой функцией 0x2 прерывания 0x13. recalibrate: mov ah, #0 mov dl, #FLOPPY_ID int 0x13 ; производим переинициализацию дисковода. jc recalibrate call read_track ; вызов функции чтения ядра jnc next_work ; если во время чтения не произошло ничего плохого то работаем дальше bad_read: ; если чтение произошло неудачно то выводим сообщение об ошибке mov bp,#error_read_msg mov cx,7 call write_message inf1: jmp inf1 ; и уходим в бесконечный цикл. Теперь нас спасет только ручная перезагрузка Сама функция чтения предельно простая: долго и нудно заполняем параметры, а затем одним махом считываем ядро. Усложнения начнуться, когда ядро перестанет помещаться в 17 секторах ( то есть 8.5 kb), но это пока только в будущем, а пока вполне достаточно такого молниеносного чтения. read_track: pusha push es push ds mov di, #SYSSEG ; Определяем mov es, di ; адрес буфера для данных xor bx, bx mov ch, #START_TRACK ;дорожка 0 mov cl, #START_SECTOR ;начиная с сектора 2 mov dl, #FLOPPY_ID mov dh, #START_HEAD mov ah, #2 mov al, #SYSSIZE ;считать 10 секторов int 0x13 pop ds pop es popa ret Вот и все. Ядро успешно прочитано и можно вывести еще одно радостное сообщение на экран. next_work: call kill_motor ; останавливаем привод дисковода mov bp,#load_msg ; выводим сообщение mov cx,#4 call write_message Вот содержимое сообщения load_msg: .ascii "done" .byte 0 А вот функция остановки двигателя привода. kill_motor: push dx push ax mov dx,#0x3f2 xor al,al out dx,al pop ax pop dx ret На данный момент на экране выведено "Booting data ...done" и лампочка привода флоппи-дисков погашена. Все затихли и готовы к смертельному номеру - прыжку в защищенный режим. Для начала надо включить адресную линию A20. Это в точности означает, что мы будем использовать 32-разрядную адресацию к данным. mov al, #0xD1 ; команда записи для 8042 out #0x64, al mov al, #0xDF ; включить A20 out #0x60, al Выведем предупреждающее сообщение, о том, что переходим в защищенный режим. Пусть все знают, какие мы важные. protected_mode: mov bp,#loadp_msg mov cx,#25 call write_message (Сообщение: loadp_msg: .byte 13,10 .ascii "Go to protected mode..." .byte 0 ) Пока еще у нас жив BIOS, запомним позицию курсора и сохраним ее в известном месте ( 0000:0x8000 ). Ядро позже заберет все данные и будет их использовать для вывода на экран победного сообщения. save_cursor: mov ah,#0x03 ; читаем текущую позицию курсора xor bh,bh int 0x10 seg cs mov [0x8000],dx ;сохраняем в специальном тайнике Теперь внимание, запрещаем прерывания (нечего отвлекаться во время такой работы) и загружаем таблицу дескрипторов cli lgdt GDT_DESCRIPTOR ; загружаем описатель таблицы дескрипторов. У нас таблица дескрипторов состоит из трех описателей: Нулевой (всегда должен присутствовать), сегмента кода и сегмента данных .align 4 .word 0 GDT_DESCRIPTOR: .word 3 * 8 - 1 ; размер таблицы дескрипторов .long 0x600 + GDT ; местоположение таблицы дескрипторов .align 2 GDT: .long 0, 0 ; Номер 0: пустой дескриптор .word 0xFFFF, 0 ; Номер 8: дескриптор кода .byte 0, CODE_ARB, 0xC0, 0 .word 0xFFFF, 0 ; Номер 0x10: дескриптор данных .byte 0, DATA_ARB, 0xCF, 0 Переход в защищенный режим может происходить минимум двумя способами, но обе ОС , выбранные нами для примера (Linux и Thix) используют для совместимости с 286 процессором команду lmsw. Мы будем действовать тем же способом mov ax, #1 lmsw ax ; прощай реальный режим. Мы теперь находимся в защищенном режиме. jmpi 0x1000, 8 ; Затяжной прыжок на 32-разрядное ядро. Вот и вся работа загрузочного сектора - немало, но и немного. Теперь мы попрощаемся с ним и направимся к ядру. В конце ассемблерного файла полезно добавить следующую инструкцию. .org 511 end_boot: .byte 0 В результате скомпилированный код будет занимать ровно 512 байт, что очень удобно для подготовки образа загрузочного диска. 3. Первые вздохи ядра (head.S) Ядро к сожалению опять начнется с ассемблерного кода. Но теперь его будет совсем немного. Мы собственно зададим правильные значения сегментов для данных (ES, DS, FS, GS). Записав туда значение соответствующего дескриптора данных. cld cli movl $(__KERNEL_DS),%eax movl %ax,%ds movl %ax,%es movl %ax,%fs movl %ax,%gs Проверим, нормально ли включилась адресная линия A20 простым тестом записи. Обнулим для чистоты эксперимента регистр флагов. xorl %eax,%eax 1: incl %eax movl %eax,0x000000 cmpl %eax,0x100000 je 1b pushl $0 popfl Вызовем долгожданную функцию, уже написанную на С. call SYMBOL_NAME(start_my_kernel) И больше нам тут делать нечего. inf: jmp inf 4. Поговорим на языке высокого уровня (start.c) Вот теперь мы вернулись к тому с чего начинали рассказ. Почти вернулись, потому что printf() теперь надо делать вручную. поскольку готовых прерываний уже нет, то будем использовать прямую запись в видеопамять. Для любопытных - почти весь код этой части , с незначительными изменениями, повзаимствован из части ядра Linux, осуществляющей распаковку (/arch/i386/boot/compressed/*). Для сборки вам потребуется дополнительно определить такие макросы как inb(), outb(), inb_p(), outb_p(). Готовые определения проще всего одолжить из любой версии Linux. Теперь, дабы не путаться со встроенными в glibc функциями, отменим их определение #undef memcpy Зададим несколько своих static void puts(const char *); static char *vidmem = (char *)0xb8000; /*адрес видеопамати*/ static int vidport; /*видеопорт*/ static int lines, cols; /*количество линий и строк на экран*/ static int curr_x,curr_y; /*текущее положение курсора */ И начнем, наконец, писать код на языке высокого уровня... правда с небольшими ассемблерными вставками. /*функция перевода курсора в положение (x,y). Работа ведется через ввод/вывод в видеопорт*/ void gotoxy(int x, int y) { int pos; pos = (x + cols * y) * 2; outb_p(14, vidport); outb_p(0xff & (pos >> 9), vidport+1); outb_p(15, vidport); outb_p(0xff & (pos >> 1), vidport+1); } /*функция прокручивания экрана. Работает, используя прямую запись в видеопамять*/ static void scroll() { int i; memcpy ( vidmem, vidmem + cols * 2, ( lines - 1 ) * cols * 2 ); for ( i = ( lines - 1 ) * cols * 2; i < lines * cols * 2; i += 2 ) vidmem[i] = ' '; } /*функция вывода строки на экран*/ static void puts(const char *s) { int x,y; char c; x = curr_x; y = curr_y; while ( ( c = *s++ ) != '\0' ) { if ( c == '\n' ) { x = 0; if ( ++y >= lines ) { scroll(); y--; } } else { vidmem [ ( x + cols * y ) * 2 ] = c; if ( ++x >= cols ) { x = 0; if ( ++y >= lines ) { scroll(); y--; } } } } gotoxy(x,y); } /*функция копирования из одной области памяти в другую. Заместитель стандартной функции glibc */ void* memcpy(void* __dest, __const void* __src, unsigned int __n) { int i; char *d = (char *)__dest, *s = (char *)__src; for (i=0;i<__n;i++) d[i] = s[i]; } /*функция издающая долгий и протяжных звук. Использует только ввод/вывод в порты поэтому очень полезна для отладки*/ make_sound() { __asm__(" movb $0xB6, %al\n\t outb %al, $0x43\n\t movb $0x0D, %al\n\t outb %al, $0x42\n\t movb $0x11, %al\n\t outb %al, $0x42\n\t inb $0x61, %al\n\t orb $3, %al\n\t outb %al, $0x61\n\t "); } /*А вот и основная функция*/ int start_my_kernel() { /*задаются основные параметры */ vidmem = (char *) 0xb8000; vidport = 0x3d4; lines = 25; cols = 80; /*считывается предусмотрительно сохраненные координаты курсора*/ curr_x=*(unsigned char *)(0x8000); curr_y=*(unsigned char *)(0x8001); /*выводится строка*/ puts("done\n"); /*уходим в бесконечный цикл*/ while(1); } Вот и вывели мы этот "Hello World" на экран. Сколько проделано работы, а на экране только две строчки Booting data ...done Go to proteсted mode ...done Немного, но и немало. Закричала новая операционная система. Мир с радостью воспринял ее. Кто знает, может быть это новый Linux ... 5. Подготовка загрузочного образа (floppy.img) Итак, подготовим загрузочный образ нашей системки. Для начала соберем загрузочный сектор. as86 -0 -a -o boot.o boot.S ld86 -0 -s -o boot.img boot.o Обрежем 32 битный заголовок и получим таким образом чистый двоичный код. dd if=boot.img of=boot.bin bs=32 skip=1 Соберем ядро gcc -traditional -c head.S -o head.o gcc -O2 -DSTDC_HEADERS -c start.c При компоновке НЕ ЗАБУДБЬТЕ параметр "-T" он указывает относительно которого смещения вести расчеты, в нашем случае поскольку ядро грузится по адресy 0x1000, то и смещение соотетствующее ld -m elf_i386 -Ttext 0x1000 -e startup_32 head.o start.o -o head.img Очистим зерна от плевел, то есть чистый двоичный код от всеческих служебных заголовков и комментариев objcopy -O binary -R .note -R .comment -S head.img head.bin И соединяем воедино загрузочный сектор и ядро cat boot.bin head.bin >floppy.img Образ готов. Записываем на дискетку (заготовьте несколько для экспериментов, я прикончил три штуки) перезагружаем компьютер и наслаждаемся. cat floppy.img >/dev/fd0 6. Е-мое, что ж я сделал (...) Здорово, правда? Приятно почувствовать себя будущим Торвальдсом или кем-то еще. Красная линия намечена, можно смело идти вперед, дописывать и переписывать систему. Описанная процедура пока что едина для множества операционных систем, будь то UNIX или Windows. Что напишете Вы? ... не знает не кто. Ведь это будет Ваша система. |