Реферат: Динамическое представление сигналов
Название: Динамическое представление сигналов Раздел: Рефераты по информатике, программированию Тип: реферат |
Многие задачи радиотехники требуют специфической формы представления сигналов. Для решения этих задач необходимо располагать не только мгновенным значением сигнала, но и знать как он ведет себя во времени, знать его поведение в “прошлом” и “будущем”. ПРИНЦИП ДИНАМИЧЕСКОГО ПРЕДСТАВЛЕНИЯ. Данный способ получения моделей сигналов заключается в следующем. Реальный сигнал представляется суммой некоторых элементарных сигналов, возникающих в последовательные моменты времени. Теперь, если мы устремим к нулю длительность отдельных элементарных сигналов, то в пределе получим точное представление исходного сигнала. Такой способ описания сигналов называется динамическим представлением , подчеркивая тем самым развивающийся во времени характер процесса. Широкое применение нашли два способа динамического представления. Первый способ в качестве элементарных сигналов использует ступенчатые функции, которые возникают через равные промежутки времени в (рис. 1.1). Высота каждой ступеньки равна приращению сигнала на интервале времени D. При втором способе элементарными сигналами служат прямоугольные импульсы. Эти импульсы непосредственно примыкают друг к другу и образуют последовательность, вписанную в кривую или описанную вокруг нее (рис. 1.2). рис 1.1, рис 1.2 Рассмотрим свойства элементарного сигнала, используемого для динамического представления по первому способу. ФУНКЦИЯ ВКЛЮЧЕНИЯ . Допустим имеется сигнал, математическая модель которого выражается системой : Такая функция описывает процесс перехода некоторого физического объекта из “нулевого” в “единичное” состояние. Переход совершается по линейному закону за время 2x. Если параметр x устремить к нулю, то в пределе переход из одного состояния в другое будет происходить мгновенно. Эта математическая модель предельного сигнала получила название функции включения или функции Хевисайда : В общем случае функция включения может быть смещена относительно начала отсчета времени на величину t0. Запись смещенной функции такова : ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПРОИЗВОЛЬНОГОСИГНАЛА ПОСРЕДСТВОМ ФУНКЦИЙ ВКЛЮЧЕНИЯ. Рассмотрим некоторый сигнал S(t), причем для определенности скажем, что S(t)=0 при t<0. Пусть {D,2D,3D,...} - последовательность моментов времени и {S1,S2,S3,...} - отвечающая им последовательность значений сигнала. Если S0=S(0) - начальное значение, то текущее значение сигнала при любом t приближенно равно сумме ступенчатых функций : Если теперь шаг в устремить к нулю. то дискретную переменную kD можно заменить непрерывной переменной t. При этом малые приращения значения сигнала превращаются в дифференциалы ds = (ds/dt) dt , и мы получаем формулу динамического представления произвольного сигнала посредством функций Хевисайда Переходя ко второму способу динамического представления сигнала , когда элементами разложения служат короткие импульсы, следует ввести новое важное понятие. ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛА ПОСРЕДСТВОМ ДЕЛЬТА-ФУНКЦИЙ. Рассмотрим импульсный сигнал прямоугольной формы, заданный следующим образом : При любом выборе параметра x площадь этого импульса равна единице : Например, если u - напряжение, то П = 1 В*с. Пусть теперь величина Е стремится к нулю. Импульс, сокращаясь по длительности, сохраняет свою площадь, поэтому его высота должна неограниченно возрастать. Предел последовательности таких функций при x® 0 носит название дельта-функции , или функции Дирака : Теперь вернемся к задаче описания аналогового сигнала суммой примыкающих друг к другу прямоугольных импульсов (рис. 2) . Если Sk - значение сигнала на k - ом отсчете, то элементарный импульс с номером k представляется как : Теперь, если произвести подстановку формулы (6) в (7) предварительно разделив и умножив на величину шага D, то Переходя к пределу при D® 0 , необходимо суммирование заменить интегрированием по формальной переменной t, дифференциал которой dt ,будет отвечать величине в . Поскольку Итак, если непрерывную функцию умножить на дельта-функцию и произведение проинтегрировать по времени, то результат будет равен значению непрерывной функции в той точке, где сосредоточен в - импульс. Принято говорить, что в этом состоит фильтрующее свойство дельта-функции. Обобщенные функции как математические модели сигналов. В классической математике полагают, что функция S(t) должна принемать какие-то значения в каждой точке оси t . Однако рассмотренная функция d(t) не вписывается в эти рамки - ее значение при t = 0 не определено вообще, хотя эта функция и имеет единичный интеграл. Возникает необходимость расширить понятие функции как математической модели сигнала. Для этого в математике была введено принципиально новое понятие обобщенной функции. В основе идеи обобщенной функции лежит простое интуитивное соображение. Когда мы держим в руках какой-нибудь предмет , то стараемся изучить его со всех сторон, как бы получить проекции этого предмета на всевозможные плоскости. Аналогом проекции исследуемой функции ¦(t) может служить, например, значение интеграла при известной функции j(t) , которую называют пробной функцией. Каждой функции j(t) отвечает, в свою очередь, некоторое конкретное числовое значение. Поэтому говорят, что формула (8) задает некоторый функционал на множестве пробных функций j(t). Непосредственно видно, что данный функционал линеен, то есть Если этот функционал к тому же еще и непрерывен, то говорят, что на множестве пробных функций j(t) задана обобщенная функция ¦(t) . Следует сказать, что данную функцию надо понимать формально-аксиоматически, а не как предел соответствующих интегральных сумм. Обобщенные фнкции , даже не заданные явными выражениями, обладают многими свойствами классических функкций. Так, обобщенные функции можно дифференцировать. И в заключение следует сказать, что в настоящее время теория обобщенных функций получила широкое развитие и многочисленные применения. На ее основе созданы математические методы изучения процессов, для которых средства классического анализа оказываются недостаточными. |