Доклад: Сопряженная однородная задача

Название: Сопряженная однородная задача
Раздел: Рефераты по математике
Тип: доклад

План.

1. Сопряженный оператор.

2. Сопряженная однородная задача.

3. Условия разрешимости.

Сопряженный оператор.

Обозначим через дифференциальный оператор второго порядка, т.е.

(1)

где представляют собой непрерывные функции в промежутке . Если и - дважды непрерывно дифференцируемые на функции, то имеем:

(2)

Как и в предыдущем параграфе, интегрирование соотношения (2) по частям дает:

(3)

Обозначим дифференциальный оператор, входящий в подынтегральное выражение в правой части (3) через , т.е. (4)

При этом соотношение (3) перепишется так:

(5)

Оператор называется сопряженным по отношению к оператору . Умножая соотношение (4) на и интегрируя полученный результат по частям, по отношению к оператору . Таким образом, операторы и взаимно сопряжены.

Как и в предыдущем параграфе, дифференциальное уравнение:

(6)

будем называть сопряженным дифференциальному уравнению:

(7)

Если же , то оператор и дифференциальное уравнение будем называть сопряженными. Сравнивая выражения (1) и (5), приходим к выводу, что тогда и только, когда:

Таким образом, оператор будем самосопряженным тогда и только тогда, когда .

При этом:

Так как любое дифференциальное уравнение вида (7) можно преобразовать в самосопряженную форму, умножив на функцию .

Дифференцируя соотношение (5) по , получаем так называемую формулу Лагранжа:

(8)

Правая часть этой формулы может быть записана как:

(9)

где

(10)

Отметим, что:

и следовательно, матрица -невырожденная. Подстановка выражения (9) в соотношение (8) дает:

(11)

Сопряженная однородная задача.

Введем следующее невырожденное линейное преобразование в вектор :

(12),

где

Заметим, что указанное преобразование может быть выполнено бесчисленным множеством способов, в зависимости от выбора матрицы А. При заданном ненулевом векторе две последние строки матрицы А можно выбрать так, чтобы придать любые требуемые значения компонентам. Это замечание используется в дальнейшем при нахождении вида сопряженных граничных условий. Поскольку , мы можем обратить преобразование (12) и получить:

.

При этом (11) можно переписать как:

или

(13),

где (14)

Билинейная форма в соотношении (13) называется каноническим представлением билинейной формы в правой части тождества (11).

Для того чтобы найти граничные условия сопряженной задачи, положим в соотношении (13)

и и получим:

(15)

Из формулы (21) следует, что однородные граничные условия, эквивалентны равенствам:

(16)

(17)

С учетом равенств (16) и (17) соотношение (15) принимает вид:

(18)

При ненулевом векторе последние две строки матрицы А могут быть выбраны так, чтобы компоненты и принимали любые требуемые значения, лишь бы и не обращались в нуль одновременно. В частности, нижние строки матрицы А можно выбрать из условия . При этом из соотношения (11) следует, что . Аналогичным образом, нижние строки матрицы А можно выбрать так, чтобы выполнялись равенства . При этом из соотношения (11) вытекает, что . Таким образом, задача, сопряженная задаче (19)

имеет вид:

(20)

где и связаны с компонентами вектора соотношением (14). Краевая задача (19) называется самосопряженной тогда и только тогда, когда и каждая из двух компонент и является линейной комбинацией и , т.е. пропорциональна .

Один из определителей:

матриц-блоков

должен быть отличным от нуля. Чтобы иметь возможность сравнить эти результаты с теми. которые были получены в предыдущем параграфе, предположим. что . Далее, выберем такие и , чтобы строки матрицы А были линейно независимы.

Например, положим и .

При этом матрица А примет вид:

(21).

Из формулы (19) следует, что .

Тогда

(22)

Подставляя матрицы (20) и (9) в соотношение (14) имеем (14а):

Следовательно, граничные условия сопряженной задачи имеют вид:

(22)

(23)

Для того, чтобы краевые задачи были самосопряженными необходимо, чтобы и чтобы каждая из компонент и являлась линейной комбинацией и . Как указывалось выше, тогда и только тогда, когда . При этом условия (21) и (20) принимают вид:

(24)

Разрешая равенства относительно и при и заменяя на , получаем:

(25)

Сравнивая граничные условия (24) и (25), заключаем, что они совпадают тогда и только тогда, когда:

(26)

Краевая задача при самосопряжена тогда и только тогда, когда выполнены соотношения (24) и равенство .

Условие разрешимости.

Определив сопряженную краевую задачу, вернемся к решению неоднородной задачи. Используя определение (25), перепишем формулу Грина в виде:

(27)

,

тогда из соотношения (27) вытекает, что условие разрешимости имеет вид:

(27)

Для того, чтобы сравнить условие (27) с условием разрешимости, используем связь и с вектором , описываемую формулой (14а) т.е.:

(28)

При этом соотношение (27) принимает вид:

Если иметь дело с граничными условиями общего вида можно выразить какие-либо два из граничных значений через два других.