Реферат: Билеты по геометрии
Название: Билеты по геометрии Раздел: Рефераты по математике Тип: реферат | |||||
БИЛЕТ 1 А1 Какова бы ни была плоскость, существуют точки принадлежащие этой плоскости и точки, не принадлежащие ей. А2 Если две различные плоскости имеют общуюточку, то они пересекаются по прямой. А3 Если две различные прямые имеют общуюточку, то ч/з них можно провести плоскость, и притом только одну. БИЛЕТ 2 ОПРЕДЕЛЕНИЕ. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. ТЕОРЕМА. Через точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна. Док-во: проведем ч/з а и М плоскость a, а ч/з М в плоскости a прямую b|| a. Докажем, что b|| a единственна. Допустим, что существует другая прямая b2 || a, и проходящая ч/з т.М. Через b2 и а можно провести плоскость a2 , которая проходит ч/з М и а, след-но, по Т.14.1(ЧЕРЕЗ ПРЯМ. И ТОЧКУ НЕ ЛЕЖ. НА ЭТОЙ ПРЯМОЙ МОЖНО ПРОВЕСТИ ПЛОСКОСТЬ И ПРИТОМ ТОЛЬКО ОДНУ) она совпадает с a. По аксиоме о параллельных прямых b2 и а совпадают. Ч.Т.Д. БИЛЕТ 3 ОПРЕДЕЛЕНИЕ. Прямая и плоскость называются параллельными, если они не имеют общих точек. ТЕОРЕМА. Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости. Док-во: Пусть a-плоскость, а - не лежащая в ней прямая и а1 - прямая в плоскости a,параллельная прямой а. Проведем плоскость a1 ч/з прямые а и а1 . Она отлична от a, т.к. прямая а не лежит в плоскости a. Плоскости a и a1 пересекаются по прямой а1 . Если бы прямая а пересекала плоскость a, то точка пересечения принадлежала бы прямой а1 . Но это невозможно, т.к. прямые а и а1 параллельны. Итак, прямая а не пересекает плоскость a, а значит, параллельна плоскости a. Ч.Т.Д. БИЛЕТ 4 ОПРЕДЕЛЕНИЕ. Две плоскости называются параллельными, если они не пересекаются. ТЕОРЕМА. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Док-во: Рассмотрим две плоскости a и b. В плоскости a лежат пересекающиеся в т.М прямые a и b, а в b - прямые а1 и b1 , причем а|| а1 и b|| b1 . Докажем, что плоскоскоти a и b не параллельны. Тогда они перес. по прямой с. Мы получили, что плоскость a проходит ч/з прямую а, параллельную плоскости b, и пересекает плоскость b по прямой с. Отсюда следует, что а|| с. Но плоскость a проходит также ч/з прямую b, параллельную плоскости b. Поэтому b || с. Таким обр. ч/з т.М проходят две прямые а и b, || с. Но это невозможно, т.к. по теореме о параллельных прямых ч/з т. М проходит только БИЛЕТ 5 Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Для док-ва данного св-ва рассмотрим прямые а и b , по которым параллельные плоскости a и b пересекаются с плоскостью j. Докажем, что а|| b. Эти прямые лежат в одной плоскости (j) и не пересекаются. В самом деле, если бы прямые а и b пересекались, то пл. a и b имели бы общ. точку, что невозможно, т.к. a||b. Итак, прямые а и b лежат в одной плоскости и не пересекаются, а|| b. 2. Vпирамиды = 1/3*Sосн. *H БИЛЕТ 6 Отрезки параллельных прямых, заключенные м/у параллельными плоскостями, равны. Для док-ва рассмотрим отрезки АВ и СD двух параллельных прямых, заключенные м/у параллельными плоскостями a и b. Докажем, АВ=СD. Плоскость j, проходящая ч/з параллельные прямые АВ и СD, пересекается с плоскостями a и b по параллельным прямым АС и ВD. Таким образом, в четырехугольнике ABDC противолеж. стор. паралл., т.е. ABDC-параллел-м Но в пар-ме прот. леж. стороны равны, значит AB=CD. Sп.п. =2pR(H+R) БИЛЕТ 7 Сформулируем основные св-ва параллельного проектирования при условии, что проектируемые отрезки и прямые не параллельны прямой L. 10 Проекция прямой есть прямая. 20 Проекция отрезка есть отрезок. 30 Проекции параллельных отрезков - параллельные отрезки или отрезки, принадлеж. одной прямой. 40 Проекции параллельных отрезков, а также проекцииотрезков, лежащих на одной прямой, пропорциональны самим отрезкам. Из св-ва 40 следует, что проекция середины отрезка есть середина проекции отрезка. БИЛЕТ 8 Определение. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. ТЕОРЕМА: Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости. БИЛЕТ 9 ТЕОРЕМА: Прямая, проведенная в плоскости ч/з основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной Док-во: AH - перпенд. к плоскости a, AM - наклонная, а – прямая проведенная в плоск. a ч/з точку M перпенд к проекцииHM наклонной. Рассмотрим плоск. AMH. Прямая а ^этой плоскости, т.к. она ^ к двум пересекающимся прямым AH и MH. Отсюда след. что прямая а перпендикулярна к любой прямой, лежащей в плоскости AMH, в частности а ^AM. Ч.Т.Д. БИЛЕТ 10 ТЕОРЕМА: Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости. Док-во: Рассмотрим две параллельные прямые а и а1 и плоскость a, такую, что а^a. Докажем, что и а1 ^a. Проведем какую-нибудь прямую х в плоскости a. Так как а^a, то а^х . Таким образом, прямая а1 перпендикулярна к любой прямой, лежащей в плоскости a, т.е. а1 ^a. Ч.Т.Д. Vпаралл-да =abc=Sосн. *H БИЛЕТ 12 ОПРЕДЕЛЕНИЕ: Две пересекающиеся плоскости называются перпендикулярными, если угол м/у ними равен 900 . ТЕОРЕМА: Если одна из двух плоскостей проходит ч/з прямую,перпендикулярную к др. плоскости, то такие плоскости перпендикулярны. Док-во: Рассмотрим плоскости a и b такие, что плоскость a проходит ч/з прямую АВ, перпендикулярную к плоскости b и пересекающуюся с ней в точке А. Докажем, что a^b. Плоскости a и b пересекаются по прямой АС, причем АВ^АС, Т.к. по усл. АВ^b, и, значит, прямая АВ^ к любой прямой, лежащей в плоскости b. Проведем в плоскости b прямую АD,^АС. Тогда ÐBAD - линейный угол двугранного угла, образованного при пересечении плоскостей a и b. Но ÐBAD=900 (т.к. AB^b). След-но, угол м/у плоскостями a и b равен 900 , т.е. a^b. Ч.Т.Д. Sбок =P*a (а - бок. ребро, Р-периметр) БИЛЕТ 11 ТЕОРЕМА: Если две прямые перпендикулярны плоскости, то они параллельны. Док-во: Рассмотрим прямые а и b , перпендикулярные к плоскости a. Докажем, что а ½½b . Через какую-нибудь точку М прямой b проведем прямую b1 , параллельную прямой a. Докажем, что прямая b1 совпадает с прямой b. Тем самым будет доказано, что a½½ b. Допустим, что прямые b и b1 не совпадают. Тогда в плоскости b, содержащей прямые b и b1 , ч/з точку М проходят две прямые, перпендикулярные к прямой c, по которой пересекаются плоскости a и b. Но это невозможно, след-но, a½½ b. Ч.Т.Д. БИЛЕТ 13 ОПРЕДЕЛЕНИЕ: Расстояние м/у одной из скрещивающихся прямых и плоскостью, проходящей ч/з другую прямую параллельно первой, называется расстоянием м/у скрещивающимися прямыми. Sполн =Sбок +2Sосн ; Sбок =P*H(ребро) БИЛЕТ 14 ОПРЕДЕЛЕНИЕ: Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае наклонной. ТЕОРЕМА: Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы. Док-во: Бок.грани прямой призмы - прямоугольники, основания которых - стороны основания призмы, а высоты равны высоте h призмы. Площадь боковой поверхности призмы равна сумме площадей указанных прямоугольников, т.е. равна сумме произведений сторон основания на высоту h . Вынося множитель h за скобки, получим в скобках сумму сторон основания призмы, т.е. его периметр Р. Итак, Sбок =P*h. Ч.Т.Д. БИЛЕТ 15 Рассмотрим два равных параллелограмма ABCD и A1 B1 C1 D1 , расположенных в плоскостях так, что отрезки AA1 ,BB1 ,CC1 , и DD1 параллельны. Поверхность составленная из двух равных параллелограммов ABCD и A1 B1 C1 D1 и четырех параллелограммов называется параллелепипедом м обозначается ABCDA1 ..D1 . Параллелограммы, из которых составлен параллелепипед, называются гранями , их стороны - ребрами , а вершины параллелограммов - вершинами параллелепипеда . ТЕОРЕМА: Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам. Док-во: Рассмотрим четырехугольник A1 D1 CB, диагонали которого являются диагоналями параллелепипеда ABCDA1 ..D1 . Т.к. A1 D1 ½½ BC и A1 D1 =BC, то A1 D1 CB - параллелограмм. Поэтому диагонали A1 C и D1 B пересекаются в некоторой точке О и этой точкой делятся пополам. БИЛЕТ 16 ТЕОРЕМА: Противолежащие грани параллелепипеда параллельны и равны. Док-во: Докажем равенство граней ABB1 A1 и DCC1 D параллелепипеда ABCA1 ..D1 . Т.к. ABCD и ADD1 A1 - параллелограммы, то AB½½DC и AA1 ½½DD1 . Таким обр., две пересекающиеся прямые AB и AA1 одной грани соответственно параллельны двум прямым CD и DD1 другой грани. Отсюда по признаку параллельности плоск. следует, что грани ABB1 A1 и DCC1 D1 параллельны. Докажем равенство этих граней. Т.к. все грани параллелепипеда - параллелограммы, то AB=DC и AA1 =DD1 . По той же причине стороны углов A1 AB и D1 DC соответственно сонаправлены, и, значит, эти углы равны. Таким обр., две смежные стороны и Ð м/у ними паралл-ма ABB1 A1 соотв. равны двум смежным сторонам у Ð м/у ними пар-ма DCC1 D1 , поэтому эти параллелограммы равны БИЛЕТ 17 ОПРЕДЕЛЕНИЕ: Параллелепипед называется прямоугольным , если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники. ТЕОРЕМА: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. Док-во: Докажем, что AC1 2 =AB2 +AD2 +AA1 2 Так как ребро CC1 перпендикулярно к основанию ABCD, то ÐACC1 -прямой. Из прямоугольного треугольника ACC1 по теореме Пифагора получаем AC1 2 =AC2 +CC1 2 . Но AC -диагональ прямоугольника ABCD, поэтому AC2 =AB2 +AD2 . Кроме того, CC1 =AA1 . След-но AC1 2 =AB2 +AD2 +AA1 2 Ч.Т.Д. БИЛЕТ 18 Рассмотрим многоугольник A1 A2 ..An и точку P не лежащую в плоскости этого многоугольника. Соединив точку P отрезками с вершинами многоугольника, получим n треугольников: PA1 A2 ,PA2 A3 ,...,PAn A1 . Многогранник, составленный из n -угольника A1 A2 ..An и n треугольников, называется пирамидой Многоугольник A1 A2 ..An называется основанием , а треугольники - боковыми гранями пирамиды. Точка P называется вершиной пирамиды, а отрезки PA1 , PA2 , ..., Pan - ее боковыми ребрами. ТЕОРЕМА: Плоскость, параллельная основанию пирамиды и пересекающая ее, отсекает подобную пирамиду. Док-во: S-вершина пирамид A - верш.основания и A1 - точка пересечения секущей плоскости с боковым ребр. SA. Подвергнем пирамиду преобразованию гомотетии относительно вершины S с коэф. гомотет. k=SA1 /SA При этом плоск-ть основания переходит в паралл. плоск-ть, проходящую ч/з точку A1 , т.е. в секущую плоскость, а след-но, вся пирамида - в отсекаемую это плоскостью часть. Т.к. гомотет. есть преобразование подобия, то отсек. часть явл пирамид., подобной данной. Ч.Т.Д. БИЛЕТ 19 ТЕОРЕМА: Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему. Док-во: Боковые грани правидьной пирамиды - равные равнобедренные треугольники, основания которых - стороны основания пирамиды, а высоты равны апофеме. Площадь S боковой поверхности пирамиды равна сумме произведений сторон основания на половину апофемы d. Вынося множитель 1/2*d за скобки, получим в скобках сумму сторон основания пирамиды, т.е. его периметр. Ч.Т.Д. БИЛЕТ 20 ТЕОРЕМА: Объем призмы равен произведению площади основания на высоту. Док-во: 1) Рассмотрим прямую треуг. призму ABCA1 B1 C1 с объемом V и высотой h. Проведем такую высоту треугольника ABC отрез.BD, которая разделяет этот треуг. на два треуг. Плоскость BB1 D разделяет данную призму на две приз., основаниями которых явл. прямоугольные треуг. ABD и BDC. Поэтому объемы V1 и V2 этих призм соответственно равны Sabd h и Sbdc h. V=V1 +V2 , т.е. V=Sabd h+Sbdc h=(Sabd +Sbdc )h. Таким обр., V=Sabc h 2) Докажем теорему для произвольной призмы с высотой h и площ. основания S. Такую призму можно разбить на прямые треуг. призмы с высотой h. Выразим объем каждой приз. по формуле (1) и сложим эти объемы. Вынося за скобки множитель h, получим в скобках сумму площадей оснований треугольных призм, т.е площадь S основания исходной призмы. Таким образом, объем призмы равен Sh. Ч.Т.Д. БИЛЕТ 21 За площадь боковой поверхности цилиндра принимают площадь ее развертки. Так как площадь прямоугольника ABB1 A1 равна AA1 *AB=2prh, то для вычислений площади боковой поверхности цилиндра радиуса r и высоты h получается формула Sбок =2prh Итак, площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту цилиндра. БИЛЕТ 22 ТЕОРЕМА: Объем конуса равен одной трети произведения площади основания на высоту. Док-во: Рассмотрим конус с объемом V. Произвольн. сечение конуса плоскостью перпендикулярной к оси Ox, является кругом с центром в т.M1 пересечения этой плоскости с осью Ox. Обозначим радиус этого круга ч/з R1 , а площадь сечения ч/з S(x), где x- абсцисса точки M1 . Из подобия прямоугольных треугольников OM1 A1 и OMA следует, что OM1 /OM=R1 /R, или x/h=R1 /R, откуда R1 =xR/h. Так как S(x)=pR1 2 , то S(x)=pR2 x2 /h2 . Применяя основную формулу для вычисления объемов тел получаем: Площадь S основания конуса равна pR2 , поэтому V=1/3Sh Ч.Т..Д. |