СОЗДАНИЕ МОДУЛЬНЫХ ПРОГРАММ, ЭЛЕМЕНТЫ ТЕОРИИ МОДУЛЬНОГО ПРОГРАММИРОВАНИЯ

ВВЕДЕНИЕ

Программирование представляет собой сферу действий, направленную на создание программ. Программирование может рассматриваться как наука и как искусство. В свою очередь программа - это последовательность команд компьютера, приводящая к решению задачи. Программа является результатом интеллектуального труда, для которого характерно творчество. Программы предназначены для машинной реализации задач. Задача представляет собой часть проблемы, подлежащей решению с помощью технических средств, а приложение (синоним программа) - реализованное на компьютере решение данной задачи. Таким образом, можно заключить, что приложение - это программная реализация решения задачи на компьютере. В свою очередь программное обеспечение (ПО) является совокупностью программных продуктов и технической документации к ним, а программный продукт (ПП) - это комплекс взаимосвязанных программ, предназначенный для реализации определенной задачи массового спроса. Программы являются критерием развития вычислительной техники, они делятся на утилиты (для нужд разработчиков) и программные продукты (для удовлетворения потребностей пользователя).

В настоящее время при создании программных продуктов возникает ряд проблем, основными из которых являются следующие:

  1. Быстрая смена вычислительной техники и алгоритмических языков.
  2. Не стыковка ЭВМ друг с другом (VAX и IBM).
  3. Отсутствие полного взаимопонимания между заказчиком и исполнителем к разработанному программному продукту.


1. НОВЕЙШИЕ НАПРАВЛЕНИЯ В ОБЛАСТИ СОЗДАНИЯ ТЕХНОЛОГИЙ ПРОГРАММИРОВАНИЯ

В основе того или иного языка программирования лежит некоторая руководящая идея, оказывающая существенное влияние на стиль соответствующих

программ.

1.1. Структурное программирование

Структурное программирование - методология программирования, базирующаяся на системном подходе к анализу, проектированию и реализации программного обеспечения. Эта методология родилась в начале 70-х годов и оказалась настолько жизнеспособной, что и до сих пор является основной в большом количестве проектов. Основу этой технологии составляют следующие положения:

Сложная задача разбивается на более мелкие, функционально лучше
управляемые задачи. Каждая задача имеет один вход и один выход. В этом случае
управляющий поток программы состоит из совокупности элементарных подзадач
с ясным функциональным назначением.

Простота управляющих структур, используемых в задаче. Это положение означает, что логически задача должна состоять из минимальной, функционально полной совокупности достаточно простых управляющих структур. В качестве примера такой системы можно привести алгебру логики, в которой каждая
функция может быть выражена через функционально полную систему: дизъюнкцию, конъюнкцию и отрицание.

Разработка программы должна вестись поэтапно. На каждом этапе должно решаться ограниченное число четко поставленных задач с ясным пониманием их значения и роли в контексте всей задачи. Если такого понимания не достигается, это говорит о том, что данный этап слишком велик, и его нужно разделить на более элементарные шаги. Согласно требованиям структурного программирования, наиболее часто детально проработанные алгоритмы изображаются в виде блок-схемы. При их разработке используются условные обозначения согласно ГОСТу («следование», «ветвление», «цикл») (рис. 1).

1.2. Нисходящее проектирование

Метод предполагает последовательное разложение функции обработки данных на простые функциональные элементы ("сверху вниз").

В результате строится иерархическая схема, которая отражает состав и

взаимоподчиненность отдельных функций. Она носит название функциональная структура алгоритма (ФСА) приложения, в которой отражаются:

цели предметной области (цель-подцель);

состав приложений (задач обработки), обеспечивающих реализацию
поставленных целей;

характер взаимосвязи приложений с их основными характеристиками;

функции обработки данных.

Рассмотрим функциональную структуру приложения (рис. 2).

Подобная структура отражает состав и взаимосвязь функций обработки информации для реализации приложений, не раскрывая логику выполнения каждой отдельной функции.

Разложение должно носить строго функциональный характер, т.е. отдельный элемент ФСА описывает законченную содержательную функцию обработки информации, которая предполагает определенный способ реализации на программном уровне.

Функции ввода/вывода информации отделяют от функций вычислительной или логической обработки данных.

Некоторые функции например Ф2, ФМ далее неразложимы на составляющие, они предполагают непосредственную программную реализацию. Другие функции Ф2... могут быть представлены в виде структурного объединения более простых функций, например Ф11, Ф12 .. Для всех функций-компонентов осуществляется самостоятельная программная реализация, составные функции типа Ф1, ФМ реализуются как программные модули, управляющие функциями - компонентами, например, в виде программ-меню.

По частоте использования функции делятся на однократно выполняемые и повторяющиеся.

1.3. Концепция модульного программирования

Так же как и для структурной технологии программирования, концепцию модульного программирования можно сформулировать в виде нескольких понятий и положений:

Функциональная декомпозиция задачи - разбиение большой задачи на
ряд более мелких, функционально самостоятельных подзадач - модулей. Модули
связаны между собой только по входным и выходным данным.

Модуль - основа концепции модульного программирования. Каждый
модуль в функциональной декомпозиции представляет собой "черный ящик" с
одним входом и одним выходом. Модульный подход позволяет безболезненно
производить модернизацию программы в процессе ее эксплуатации и облегчает
ее сопровождение. Дополнительно модульный подход позволяет разрабатывать
части программ одного проекта на разных языках программирования, после чего
с помощью компоновочных средств объединять их в единый загрузочный модуль.

Реализуемые решения должны быть простыми и ясными. Если назначение модуля непонятно, то это говорит о том, что декомпозиция начальной или
промежуточной задачи была проведена недостаточно качественно. В этом случае
необходимо еще раз проанализировать задачу и, возможно, провести дополнительное разбиение на подзадачи. При наличии сложных мест в проекте их нужно
подробнее документировать с помощью продуманной системы комментариев.
Этот процесс нужно продолжать до тех пор, пока действительно не удастся добиться ясного понимания назначения всех модулей задачи и их оптимального сочетания.

Назначение всех переменных модуля должно быть описано с помощью
комментариев по мере их определения.

1.4. Объектно-ориентированное программирование (ООП)

Идея ООП заключается в стремлении связать данные с обрабатывающими эти данные процедурами в единое целое - объект. ООП основано на трех важнейших принципах, придающих объектам новые свойства. Этими принципами являются инкапсуляция, наследование и полиморфизм.

Инкапсуляция - объединение в единое целое данных и алгоритмов обработки этих данных. В рамках ООП данные называются полями объекта, а алгоритмы - объектными методами.

Наследование - свойство объектов порождать своих «потомков». Объект — «потомок» автоматически наследует от «родителей» все поля и методы, может дополнять объекты новыми полями и заменять (перекрывать) методы «родителя» или дополнять их.

Полиморфизм - свойство родственных объектов (т.е. объектов, имеющих одного общего «родителя») решать схожие по смыслу проблемы разными
способами.

1.5. CASE-системы

Представление о CASE - комплексах связано в нашем сознании с чем-то, не имеющим отношения к обычному программированию.

В Америке из-за сильнейшей конкуренции CASE-средства используются подавляющим большинством фирм - разработчиков программного обеспечения. Мощный толчок CASE-средства получили в пору внедрения объектно-ориентированной технологии разработки ПО, когда старого, проверенного временем метода проектирования "сверху вниз" стало явно недостаточно. К тому же появились технологии объектного моделирования Booch, OMT, UML, сами по себе весьма сложные для привязки к языкам программирования, чтобы оперировать ими вручную.

Сегодня лидирующей в мире CASE-системой считается Rational Rose корпорации Rational Software. Система Rational Rose нацелена на создание модулей с использованием языка Unified Modeling Language (UML). Кстати, UML стал стандартным языком объектно-ориентированной разработки не без подачи Rational Software, которая не только выпускает программные продукты, где используются UML, но и активно принимает участие в организации Object Management Group (OMG), занятой созданием и обновлением спецификаций языка UML, технологии распределенных вычислений CORBA и т.д. В компании Rational работают три создателя и евангелиста объектно-ориентированной разработки и языка UML. Это Гради Буч, Айвар Джекобсон и Джим Рамбаух.

Последняя версия CASE-системы компании Rational Software Rational Rose 98 успешно применяется для создания коммерческого ПО и поддерживает популярные языки программирования Java, Си++, Смолток, Ада, Visual Basic, Power Builder и Forte. Кроме того, пакет Rose 98 способен генерировать описания на языках Interface Definition Language (IDL) для приложений CORBA и Data Definition Language (DDL) для приложений доступа к базам данных, в том числе и Oracle 8. Разумеется, поддержка того или иного языка программирования зависит от того, о какой редакции пакета Rational Rose 98 идет речь. К примеру, нельзя требовать многого от самого простого варианта пакета - Rose 98 Modeler Edition. Зато Rose 98 Enterprise Edition оснащен от души.

Нельзя не отметить, что система Rose - признанный лидер среди средств визуального моделирования, и, используя ее, можно интерактивно разрабатывать архитектуру создаваемого приложения, генерировать его исходные тексты и параллельно работать над документированием разрабатываемой системы. С помощью Rational Rose можно создавать новые модели на базе обратного разбора двоичных com модулей или исходные тексты прикладных программ и библиотек классов.

Преимущества от применения Rational Rose 98 значительны:

  1. Сокращение цикла разработки приложения.
  2. Увеличение продуктивности работы программистов.
  3. Улучшение потребительских качеств создаваемых программ за счет
    ориентации на пользователей и бизнес.
  4. Способность вести большие проекты и группы проектов.
  5. Возможность повторного использования уже созданного ПО за счет
    упора на разбор их архитектуры и компонентов.
  6. Язык UML служит универсальным "мостиком" между разработчиками
    из разных отделов.

1.6. Технологическая схема решения задач

Технологическая схема, в которой пользователь, желающий решить свою задачу на ЭВМ, обращается за консультацией к специалисту по алгоритмизации (формализации), а тот, в свою очередь, к программисту, создающему программу на основе формальной модели решаемой задачи, сейчас отходит в прошлое.

Она оказывается неэффективной по ряду причин. Например, пользователь не всегда точно знает, чего он хочет, и алгоритмист, когда формализует задачу, поневоле упрощает ее, теряет или отбрасывает многое из того, что пользователь знает, но либо не сообщил алгоритмисту, либо опрометчиво согласился на предлагаемые упрощения. Полученная после этого модель программируется и реализуется на ЭВМ. А пользователь явно не доволен. Только теперь он понял, что ему нужно, и видит, что ему дали не то, что ему необходимо. После этого начинается второй раунд взаимодействия, за ним, возможно третий, четвертый и т.д.

Почему так происходит? Скорее всего, потому, что пользователь, работающий в областях, где формализация еще не проявила себя в полную силу - сейчас их принято называть плохо структурированными проблемными областями, - просто не ведает о том, какие же знания необходимо сообщить алгоритмисту о своей задаче, чтобы полностью удовлетворить и его и себя.

Возникает идея - убрать из технологической схемы алгоритмиста, сократить путь пользователя к ЭВМ: пусть он теперь со своей задачей обращается прямо к программисту. Правда, для этого нужно, чтобы программист повысил свой профессиональный уровень, овладел бы "смежной" профессией алгоритмиста. Но тогда программисты станут более дефицитными, чем сейчас, ибо требования к ним резко возрастут. А ведь армия программистов и так не успевает обслужить всех желающих, и если темпы роста пользователей не уменьшатся, то все население земного шара будет состоять из пользователей и программистов.

Ясно, что этот путь тупиковый. К тому же он не решает основной проблемы - прямого доступа пользователей к ЭВМ и не устраняет непонимания между пользователем и программистом, возникающим из-за отсутствия у программиста знаний о проблемной области пользователя, а у пользователя - о способах решения задач на ЭВМ.

А что если и программиста удалить из технологической цепи пользователь - ЭВМ? Это можно сделать, если пользователи научатся программировать, станут профессионалами в двух областях - в своей собственной и в программировании. Насколько это возможно? И сейчас существуют специалисты, овладевшие искусством программирования настолько, что сами свободно работают с вычислительной машиной. Но таких специалистов не много, так как овладеть двумя совершенно разными профессиями - дело нелегкое. И, как правило, в одной из них человек остается все-таки полупрофессионалом.

Есть ещё один путь приобщения специалиста к современной вычислительной технике - это повышение возможностей самих ЭВМ, повышение уровня их "интеллекта". Программиста можно убрать из технологической цепи решения задачи лишь тогда, когда в самой ЭВМ появиться "автоматический программист", который будет взаимодействовать с пользователем и помогать ему составлять программы. Так возникает идея ЭВМ нового - пятого поколения. В отличие от ЭВМ предшествующих поколений новые машины должны иметь средства для интеллектуального взаимодействия с пользователем на его профессиональном естественном языке. Другими словами, не пользователь приближается к ЭВМ, а сама ЭВМ становится интеллектуальным собеседником и помощником пользователя.

1.7. Индустрия искусственного интеллекта

Бум, возникший в конце семидесятых годов в искусственном интеллекте и приведший к созданию новой отрасли промышленности, не случаен. Его вызвали три причины:

  1. Угроза всеобщей мобилизации населения земного шара в программисты привела к идее пятого поколения ЭВМ. Но создание таких ЭВМ требует разработки средств автоматического выполнения функций алгоритмиста и программиста, то есть интеллектуальных функций по формализации задач и составлению программ для их решения. А это уже сфера искусственного интеллекта, ибо одно из толкований целей этой науки состоит как раз в утверждении, что она должна создавать методы автоматического решения задач, считающихся в человеческом понимании интеллектуальными. Это означает, что создание ЭВМ пятого поколения невозможно без использования достижений, накопленных в искусственном интеллекте.
  2. Развитие робототехнических малолюдных или безлюдных производств. На современных промышленных предприятиях происходит активное внедрение автоматических систем, в которых широко используются интеллектуальные роботы. Прогресс в этой области во многом зависит от того, насколько роботы могут хранить в своей памяти необходимую сумму знаний о профессии, которой они овладевают.
  3. Необходимость передавать на ЭВМ задачи из плохо структурированных проблемных областей. Именно для них нужно автоматизировать труд алгоритмиста, его способность формализовать то, что с трудом поддается формализации. Путь решения этой проблемы - формализация знаний, которые есть у профессионалов в данной проблемной области, но хранятся в их памяти в виде не формализованных соображений, умений и навыков. Такие профессионалы являются экспертами своего дела, а получаемые от них знания обычно называют экспертными. Если в базу знаний системы заложить знания подобного типа, то система будет называться экспертной.

ЭВМ пятого поколения, интеллектуальные роботы, экспертные системы и многие другие интеллектуальные системы обладают одним общим свойством: их работа основывается на знаниях, хранимых в базе знаний системы. Их часто так и называют - системами, основанными на знаниях.

1.8. Экспертные системы

Экспертные системы могут не только найти решение той или иной задачи, но и объяснить пользователю, как и почему оно получено. Это означает, что в экспертных системах реализована возможность "самоанализа", в них появилась возможность рассуждать о знаниях и манипулировать ими. А значит появилась и возможность иметь знания о знаниях, т.е. метазнания. С их помощью в экспертных системах стала возможной оценка знаний с точки зрения их полноты и корректности, а также реализация "функции любопытства", связанной с активным поиском связей между хранящимися в памяти знаниями, их классификацией и пополнением за счет разнообразных логических процедур.

В экспертных системах сделан важный шаг - знания, хранящиеся в системе, стали объектом ее собственных исследований.

Потенциально человек способен к овладению любым видом интеллектуальной деятельности. Он может научиться играть и в шахматы, и в морской бой, и в любые другие игры, ибо он обладает универсальными метапроцедурами, позволяющими ему создать процедуры решения конкретных интеллектуальных задач.

Развитие теории искусственного интеллекта в конце шестидесятых годов началось с осознания именно этого факта. У новой науки появился свой специфический объект исследований и моделирования - универсальные метапроцедуры программирования интеллектуальной деятельности. В их числе имеются метапроцедуры общения, обучения, анализа воспринимаемой системой информации и многие другие. Но центральное место здесь, несомненно, занимают те метапроцедуры, которые связаны с накоплением знаний и использованием их при решении интеллектуальных задач. Именно эти метапроцедуры находят свое воплощение в экспертных системах.

Существующие сейчас экспертные системы принято делить на два класса: консультационные и исследовательские. Первые призваны давать советы, когда у пользователя возникает необходимость в них, а вторые - помогать исследователю решать интересующие его научные задачи.

Система общения позволяет вводить в экспертную систему информацию на естественном языке, ограниченном рамками профессиональной области, и организует ведение диалога с пользователем. Эта система сообщает пользователю о непонятных для нее словах, о допущенных им ошибках, предлагает наборы действий, которые пользователь при желании может выполнить. Если пользователь еще не освоил "этику приема", то в дело включается блок обучения: в диалоговом режиме он постепенно обучает пользователя общению с ЭВМ, учит его решению задач, используя примеры. Пользователь может обращаться к этому учителю, когда захочет - система всегда найдет время для пояснения непонятных пользователю моментов.

Решатель осуществляет поиск вывода решения, нужного пользователю на основе тех знаний, которые хранятся в базе знаний системы. Он играет роль мозгового центра системы. Чтобы функции решателя в консультационной экспертной системе стали более понятными, рассмотрим конкретный пример. Предположим, что в полевых условиях археолог столкнулся с находками, которые поставили его перед задачей датировки раскапываемого объекта. Известно, что точная датировка во многих случаях вещь весьма сложная. Она требует тщательного изучения находок, привлечения огромного по объему сравнительного материала из находок других археологов, требует от археолога умения делать правильные логические выводы, выдвигать гипотезы и отвергать их на основании найденного. При работах на раскопках рядом может не быть тех специалистов, которые могли бы оказать квалифицированную помощь. Именно для такой ситуации предназначена консультационная экспертная система. В ее базе знаний может храниться огромное количество накопленных ранее фактов и установленных связей между этими фактами, а также мнения (не всегда совпадающие между собой) ведущих специалистов в данной области.

Когда археолог через систему общения обращается к системе за консультацией, то она может начать с того, что потребует ввести описание всех тех находок (на языке, понятном системе), которыми этот археолог располагает. Получив в свое распоряжение эти описания, экспертная система начинает формировать логический вывод. От исходных фактов, введенных в нее, и с помощью тех взаимосвязей, которые должны существовать между фактами, она выводит гипотезы, которые не противоречат наблюдаемым фактам. Если эта гипотеза однозначна, то она сообщается пользователю. Если имеет альтернативные возможности, то экспертная система может задать археологу дополнительные уточняющие вопросы, например, о характере рисунков на остатках найденной керамики, которые еще не были сообщены системе. Если археолог не может сообщить системе никаких новых дополнительных сведений, то ему будет сообщено несколько гипотез о датировке. При этом каждая гипотеза может оцениваться некоторым весом достоверности. Например, ответ может иметь вид: "Данный объект относится к периоду А с достоверностью 15% и к периоду В с достоверностью 85%". Если при дальнейших раскопках будет обнаружен другой предмет, то он датируется периодом В, как наиболее вероятным. Для каждого вновь найденного предмета могут быть получены вероятности датировки, а затем все результаты могут быть проанализированы совместно.

Информация в базе знаний не хранится, как зерно в элеваторе, просто сваленное в бункер. В этом случае база знаний не смогла бы обеспечить эффективную работу решателя. В экспертной системе существует специальный комплекс средств, с помощью которых в базе знаний наводится необходимый порядок. Информация здесь классифицируется, обобщается, оценивается ее непротиворечивость, отдельные информационные единицы объединяются связями различного типа. Другими словами, в базе знаний возникает структурированная модель проблемной области, в которой отражены все ее особенности, закономерности и способы решения задач. Всеми этими процедурами заведует система поддержки базы знаний.

Система объяснения - важнейшая отличительная компонента экспертных систем. К ней пользователь может обращаться с вопросами типа "Что есть X?", "Как получен У?", "Почему получен У, а не Z?" и "Зачем нужен X?". За каждым таким вопросом скрывается свой комплекс процедур, выполнение которых позволяет дать пользователю интересующий его ответ. Вопрос "Что есть X?" требует выдачи пользователю всей информации о X, которой система располагает, что может потребовать весьма непростых поисковых процедур в базе знаний. Эти процедуры реализуются в решателе, так как во многих случаях для ответа на вопрос пользователя надо из исходных фактов, хранящихся в базе, получить логическим путем новые производные факты.

Вопрос "Как получен У?" означает, что пользователь хочет ознакомиться с тем, как рассуждала система, шаг за шагом выводя из сообщенных ей пользователем фактов свое заключение. Для ответа на такой вопрос система объяснения должна обратиться в решатель, в памяти которого, как на экране электроннолучевой трубки с послесвечением, должен некоторое время сохраняться "трек" того пути, который прошел решатель.

Вопрос "Почему получен У, а не Z?" требует от экспертной системы умения обосновывать отказ от гипотез. В том же решателе хранится информация об альтернативном выборе между У и Z, который один или не один раз возникал на пути поиска решения. В этих "точках разветвления" система выбирала путь, ведущий к У, а не тот, который вел к Z. Использованные в этот момент соображения, определявшие выбор, выдаются пользователю.

Наконец ответ на вопрос "Зачем нужен X?", возникающий в ситуации, когда экспертная система просит пользователя ввести в нее информацию о X, требует выполнения процедур обоснования необходимости сведений о X для получения решения. Эти обоснования извлекаются из модели проблемной области, хранящейся в базе знаний.

Возможны и другие типы вопросов пользователя к системе объяснения, но и приведенных достаточно, чтобы понять, сколь важна ее роль: только она делает выдаваемые решения понятными и обоснованными для пользователя.

Почти так же, как и консультативные, устроены исследовательские экспертные системы, но в них имеются еще и блоки, в которых выполняются все необходимые для специалиста расчеты. Можно сказать, что экспертные системы такого типа - это симбиоз ЭВМ пятого поколения и консультационных экспертных систем.

1.9. Законы эволюции программного обеспечения

Проведем ассоциации компьютера с человеком. У компьютера есть органы восприятия информации из внешнего мира - это клавиатура, мышь, накопители на магнитных дисках. У компьютера есть органы, "переваривающие" полученную информацию, - это центральный процессор и оперативная память. И наконец, у компьютера есть органы речи, выдающие результаты переработки. Современным компьютерам, конечно, далеко до человека. Их можно сравнить с существами, взаимодействующими с внешним миром на уровне ограниченного набора безусловных рефлексов. Этот набор рефлексов образует систему машинных команд. На каком бы высоком уровне мы ни общались с компьютером, в конечном итоге все сводится к скучной и однообразной последовательности машинных команд. Каждая машинная команда является своего рода раздражителем для возбуждения того или иного безусловного рефлекса. Реакция на этот раздражитель всегда однозначная и "зашита" в блоке микрокоманд в виде микропрограммы. Эта микропрограмма и осуществляет действия по реализации машинной команды, но уже на уровне сигналов, подаваемых на те или иные логические схемы компьютера, управляя различными подсистемами компьютера. В этом состоит так называемый принцип микропрограммного управления. Продолжая аналогию с человеком, отметим: для того, чтобы компьютер правильно питался, придумано множество операционных систем, компиляторов сотен языков программирования. Но все они являются по сути лишь блюдом, на котором по определенным правилам доставляется пища (программы) желудку (компьютеру). Только желудок компьютера любит диетическую, однообразную пищу - подавай ему информацию структурированную, в виде строго организованных последовательностей нулей и единиц, комбинации которых составляют машинный язык. Таким образом, внешне являясь полиглотом, компьютер понимает только один язык - язык машинных команд.

Программисту не нужно пытаться постичь значения различных комбинаций двоичных чисел, т.к. еще в 50-е годы программисты стали использовать для программирования символический аналог машинного языка, который назвали языком Ассемблера. Этот язык точно отражает все особенности машинного языка. Именно поэтому язык Ассемблера для каждого типа компьютера свой.

Язык программирования - это специальный язык, на котором пишут команды для управления компьютером. Языки программирования созданы для того, чтобы людям было проще читать и писать для компьютера, но они затем должны транслироваться (транслятором или интерпретатором) в машинный код, который только и может исполняться компьютером. Языки программирования можно разделить на языки высокого уровня и языки низкого уровня.

Язык низкого уровня - это язык программирования, предназначенный для определенного типа компьютера и отражающий его внутренний машинный код. Языки низкого уровня часто называют машинно-ориентированными языками. Их сложно конвертировать для использования на компьютерах с разными центральными процессорами, а также довольно сложно изучать, поскольку для этого требуется хорошо знать принципы внутренней работы компьютера.

Язык высокого уровня - это язык программирования, предназначенный для удовлетворения требований программиста; он не зависит от внутренних машинных кодов компьютера любого типа. Языки высокого уровня используют для решения проблем и поэтому их часто называют проблемно-ориентированными языками. Каждая команда языка высокого уровня эквивалентна нескольким командам в машинных кодах, поэтому программы, написанные на языках высокого уровня, более компактны, чем аналогичные программы в машинных кодах. Основные языки программирования и области их использования приведены в таблице 1.

Эволюция технических средств персональных компьютеров привела к повсеместному вытеснению старой "доброй" ОС MS-DOS значительно более мощными системами Windows, программирование для которых существенно сложнее, чем программирование для MS-DOS. Разработчики систем программирования, и прежде всего такие корпорации, как Microsoft и Borland, не замедлили выпустить соответствующие средства: уже в 1991 году, т. е. сразу после появления Windows 3.1, Borland выпускает Turbo Pascal for Windows, а в 1992 - усовершенствованную версию этой системы программирования - Borland Pascal with Objects 7.0. Эти первые специализированные инструменты требовали основательного знания Windows и были сложны в освоении. Но вот в 1993 году Microsoft выпустила первую визуальную среду программирования Visual Basic, и программирование для Windows стало даже проще, чем программирование для MS-DOS. В ответ на это Borland в 1995 году выпустила первую версию Delphi, а затем, с интервалом в 1 год, - еще 4 версии: 2, 3, 4 и 5. Наконец, в середине 2001 г. выпускается версия 6, которая и положена в основу этой книги. Материал книги можно с некоторыми (часто несущественными) ограничениями использовать для изучения более ранних версий. Не секрет, что лучшим языком для изучения и освоения программирования является Паскаль, а лучшей в мире системой программирования для MS-DOS - Turbo Pascal.

Delphi продолжила серию Паскаль-ориентированных средств программирования и является наиболее удобным инструментом для Windows-программирования. Версии Delphi развивались по принципу наращивания своих возможностей. Если с 1-й по 4-ю версии Delphi могла работать с базами данных только с помощью механизма BDE, то в версии 6 таких механизмов уже 4 - BDE, ADO, IBExpress, dbExpress. Если 8 компонентов страницы internet версии 2 давали лишь возможность использовать некоторые технологии Интернет в локальных сетях, то более 100 компонентов версии 6 обеспечивают полноценную возможность Web-программирования, т. е. создания работающих под управлением Web-сервера программ, обеспечивающих интерактивное взаимодействие с клиентом и публикацию по его требованию необходимых данных. Программирование с помощью Delphi возможно для начинающих программистов, во всяком случае освоение оболочки не требует специальных знаний ни в области программирования, ни в области Windows, хотя умение работать с Windows на уровне пользователя -обязательное условие (если, разумеется, вы захотите создать хотя бы одну из описываемых в учебнике программ). В основе Delphi заложен современный язык программирования Object Pascal, без детального знания которого эффективная работа с Delphi невозможна. Особое значение имеет основополагающий инструмент Object Pascal - классы и объекты. Практически все современные языки программирования (в том числе C++ и Visual Basic) поддерживают методику объектно-ориентированного программирования (ООП), позволяющую резко сократить сроки разработки программ и существенно повысить их качество.


2. СОЗДАНИЕ МОДУЛЬНЫХ ПРОГРАММ, ЭЛЕМЕНТЫ ТЕОРИИ МОДУЛЬНОГО ПРОГРАММИРОВАНИЯ

Модульное программирование основано на понятии модуля. Модуль представляет собой совокупность логически связанных элементов, предназначенных для использования другими модулями и программами.

Модули предназначены для хранения готовых программ. Модуль сам по себе не является выполняемой программой - его объекты используются другими программными единицами (процедурами, функциями).

Модуль имеет:

один вход и один выход - на входе программный модуль получает определенный набор исходных данных, выполняет обработку данных и возвращает
один набор результатных данных, т.е. реализует принцип IPO (Input - Process -
Output) - вход-процесс-выход;

функциональную завершенность - модуль выполняет перечень операций для реализации каждой отдельной функции в полном составе, достаточных
для завершения начатой обработки;

логическую независимость - результат работы модуля зависит только
от исходных данных и не зависит от работы других модулей;

слабые информационные связи с другими программными модулями -
обмен информации между модулями должен быть по возможности минимизирован;

обозримый по размеру и сложности программный элемент.

Каждый модуль состоит из Спецификации - правила использования модуля и Тела - способа реализации процесса обработки.

Принцип модульного программирования включает в себя определение состава и подчиненности функций и определение набора программных модулей, реализующих эти функции.

При составлении алгоритма модульной программы необходимо учитывать следующее:

каждый модуль вызывается на выполнение вышестоящим модулем и,
закончив работу, возвращает управление вызвавшему его модулю;

принятие основных решений в алгоритме выносится на максимально
«высокий» по иерархии уровень;

для использования одной и той же функции в разных местах алгоритма
создается один модуль, который вызывается на выполнение по мере необходимости.

В результате детализации алгоритма создается Функционально-модульная схема алгоритма приложения, которая является основой для программирования (рис. 3). Функция 1 и Функция 2 выполняются с помощью одного и того же программного модуля. Функция 3 реализуется одним программным модулем. Функция 4 - в виде последовательности выполнения Программных Модулей (2, 3 .. . р). Функция 5 - с помощью иерархии связанных модулей.

Состав и вид программных модулей, их назначение и характер использования в программе в значительной степени определяются инструментальными средствами. Например, применительно к средствам СУБД отдельными модулями могут быть: Экранные формы ввода и редактирования информации БД; Отчеты генератора отчетов; Макросы; Стандартные процедуры обработки информации; Меню, обеспечивающее выбор функции обработки и др.

Стандартный Паскаль не предусматривает механизмов раздельной компиляции частей программы с последующей их сборкой перед выполнением. Более того, последовательное проведение в жизнь принципа обязательного описания любого объекта перед его использованием делает фактически невозможным разработку разнообразных библиотек прикладных программ. Точнее, такие библиотеки в рамках стандартного Паскаля могут существовать только в виде исходных текстов, и программист, подчас, должен сам включать в программу весьма обширные тексты различных поддерживающих процедур, таких, как процедуры матричной алгебры, численного интегрирования, математической статистики и т.п.

Поэтому вполне понятно стремление разработчиков коммерческих компиляторов Паскаля включать в язык средства, повышающие его модульность. Чаще всего таким средством является разрешение использовать внешние процедуры и функции, тело которых заменяется стандартной директивой EXTERNAL. Разработчики Турбо Паскаля пошли в этом направлении еще дальше, включив в язык механизм модулей.

Модуль в Паскале - это автономно компилируемая программная единица, включающая в себя различные компоненты раздела описаний (типы, константы, переменные, процедуры и функции) и, возможно, некоторые исполняемые операторы инициирующей части. По своей организации и характеру использования в программе модули Турбо Паскаля близки к модулям-пакетам (PACKAGE) языка программирования Ада. В них так же, как в пакетах Ады, явным образом выделяется некоторая «видимая» интерфейсная часть, в которой сконцентрированы описания глобальных типов, констант и переменных, а также приводятся заголовки глобальных процедур и функций. Появление объектов в интерфейсной части делает их доступными для других модулей и основной программы. Тела процедур и функций располагаются в исполняемой части модуля, которая может быть скрыта от пользователя.

Насколько сильно изменяются свойства языка Паскаль при введении механизма модулей, свидетельствует следующее замечание его автора - Н. Вирта, сделанное им по поводу более позднего языка Модула-2: «Модули - самая важная черта, отличающая язык Модула-2 от его предшественника Паскаля».

Модули представляют собой прекрасный инструмент для разработки библиотек прикладных программ и мощное средство модульного программирования. Важная особенность модулей заключается в том, что компилятор Турбо Паскаля размещает их программный код в отдельном сегменте памяти. Максимальная длина сегмента не может превышать 64 Кбайта, однако количество одновременно используемых модулей ограничивается лишь доступной памятью, что дает возможность создавать весьма крупные программы.

2.1. Структура модулей Паскаля

Модуль имеет следующую структуру:

UNIT <имя>;

INTERFACE

<интерфейсная часть>

IMPLEMENTATION

<исполняемая часть>

BEGIN

<инициирующая часть>

END.

Здесь UNIT - зарезервированное слово (единица); начинает заголовок модуля; <имя> - имя модуля (правильный идентификатор); INTERFACE - зарезервированное слово (интерфейс); начинает интерфейсную часть модуля;

IMPLEMENTATION - зарезервированное слово (выполнение); начинает исполняемую часть;

BEGIN - зарезервированное слово; начинает инициирующую часть модуля;

конструкция BEGIN <инициирующая частъ> необязательна;

END - зарезервированное слово - признак конца модуля.

Таким образом, модуль состоит из заголовка и трех составных частей, любая из которых может быть пустой.


3. ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ

В основе того или иного языка программирования лежит некоторая руководящая идея, оказывающая существенное влияние на стиль соответствующих программ.

Исторически первой была идея процедурного структурирования программ, в соответствии с которой программист должен был решить, какие именно процедуры он будет использовать в своей программе, а затем выбрать наилучшие алгоритмы для реализации этих процедур. Появление этой идеи было следствием недостаточной изученности алгоритмической стороны вычислительных процессов, столь характерной для ранних программных разработок (сороковые - пятидесятые годы). Типичным примером процедурно-ориентированного языка является Фортран - первый и, до сих пор, один из популярнейших языков программирования. Последовательное использование идеи процедурного структурирования программ привело к созданию обширных библиотек программирования, содержащих множество сравнительно небольших процедур, из которых, как из кирпичиков, можно строить «здание» программы.

По мере прогресса в области вычислительной математики акцент в программировании стал смещаться с процедур в сторону организации данных. Оказалось, что эффективная разработка сложных программ нуждается в действенных способах контроля правильности использования данных. Контроль должен осуществляться как на стадии компиляции, так и при прогоне программ. В противном случае, как показала практика, резко возрастают трудности создания крупных программных проектов. Отчетливое осознание этой проблемы привело к созданию Алгола-60, а позже - Паскаля, Модулы-2, Си и множества других языков программирования, имеющих более или менее развитые структуры типов данных. Логическим следствием развития этого направления стал модульный подход к разработке программ, характеризующийся стремлением «спрятать» данные и процедуры внутри модуля.

Начиная с языка Симула-67, в программировании наметился новый подход, который получил название объектно-ориентированного программирования (ООП). Его руководящая идея заключается в стремлении связать данные с обрабатывающими эти данные процедурами в единое целое - объект. Характерной чертой объектов является инкапсуляция (объединение) данных и алгоритмов их обработки, в результате чего и данные, и процедуры во многом теряют самостоятельное значение. Фактически, объектно-ориентированное программирование можно рассматривать как модульное программирование нового уровня, когда вместо, во многом случайного, механического объединения процедур и данных акцент делается на их смысловую связь.

Какими мощными средствами располагает объектно-ориентированное программирование наглядно демонстрирует библиотека Turbo Vision, входящая в комплект поставки Турбо Паскаля.

Следует заметить, что преимущества ООП в полной мере проявляются лишь при разработке достаточно сложных программ. Более того, инкапсуляция придает объектам совершенно особое свойство «самостоятельности», максимальной независимости от остальных частей программы. Правильно сконструированный объект располагает всеми необходимыми данными и процедурами их обработки, чтобы успешно реализовать требуемые от него действия. Попытки использовать ООП для программирования несложных алгоритмов, связанных, например, с расчетными вычислениями по готовым формулам, чаще всего выглядят искусственными нагромождениями ненужных языковых конструкций. Такие программы обычно не нуждаются в структуризации, расчленении алгоритма на ряд относительно независимых частей. Их проще и естественнее разрабатывать традиционными способами Паскаля. При разработке сложных диалоговых программ программист вынужден структурировать программу, так как только в этом случае он может рассчитывать на успех: «критической массой» неструктурированных программ является объем в 1000-1200 строк исходного текста - отладка неструктурированных программ большего объема обычно сталкивается с чрезмерными трудностями. Структурирование программы ведет, фактически, к разработке собственной библиотеки программирования - вот в этот момент на помощь и приходят новые средства ООП.

3.1. Основные принципы ООП

Объектно-ориентированное программирование основано на «трех китах» - трех важнейших принципах, придающих объектам новые свойства. Этими принципами являются инкапсуляция, наследование и полиморфизм.

Инкапсуляция

Инкапсуляция есть объединение в единое целое данных и алгоритмов обработки этих данных. В рамках ООП данные называются полями объекта, а алгоритмы - объектными методами.

Инкапсуляция позволяет в максимальной степени изолировать объект от внешнего окружения. Она существенно повышает надежность разрабатываемых программ, т.к. локализованные в объекте алгоритмы обмениваются с программой сравнительно небольшими объемами данных, причем количество и тип этих данных обычно тщательно контролируются. В результате замена или модификация алгоритмов и данных, инкапсулированных в объект, как правило, не влечет за собой плохо прослеживаемых последствий для программы в целом (в целях повышения защищенности программ в ООП почти не используются глобальные переменные).

Другим немаловажным следствием инкапсуляции является легкость обмена объектами, переноса их из одной программы в другую. Можно сказать, что ООП «провоцирует» разработку библиотек объектов.

Наследование

Наследование есть свойство объектов порождать своих потомков. Объект-потомок автоматически наследует от родителя все поля и методы, может дополнять объекты новыми полями и заменять (перекрывать) методы родителя или дополнять их.

Принцип наследования решает проблему модификации свойств объекта и придает ООП в целом исключительную гибкость. При работе с объектами программист обычно подбирает объект, наиболее близкий по своим свойствам для решения конкретной задачи, и создает одного или нескольких потомков от него, которые «умеют» делать то, что не реализовано в родителе.

Последовательное проведение в жизнь принципа «наследуй и изменяй» хорошо согласуется с поэтапным подходом к разработке крупных программных проектов и во многом стимулирует такой подход.

Полиморфизм

Полиморфизм - это свойство родственных объектов (т.е. объектов, имеющих одного общего родителя) решать схожие по смыслу проблемы разными способами. В рамках ООП поведенческие свойства объекта определяются набором входящих в него методов. Изменяя алгоритм того или иного метода в потомках объекта, программист может придавать этим потомкам отсутствующие у родителя специфические свойства. Для изменения метода необходимо перекрыть его в потомке, т.е. объявить в потомке одноименный метод и реализовать в нем нужные действия. В результате в объекте-родителе и объекте-потомке будут действовать два одноименных метода, имеющих разную алгоритмическую основу и, следовательно, придающих объектам разные свойства. Это и называется полиморфизмом объектов.

В Турбо Паскале полиморфизм достигается не только описанным выше механизмом наследования и перекрытия методов родителя, но и их виртуализацией (см. ниже), позволяющей родительским методам обращаться к методам потомков.

3.2. Создание объектов

В Турбо Паскале для создания объектов используются три зарезервированных слова: object, constructor, destructor и три стандартные директивы: private, public и virtual.

Зарезервированное слово object используется для описания объекта. Описание объекта должно помещаться в разделе описания типов:

type

MyObject = object

(Поля объекта}

{Методы объекта}

end ;

Если объект порождается от какого-либо родителя, имя родителя указывается в круглых скобках сразу за словом object:

type

MyDescendantObject = object(MyObject)

end;

Любой объект может иметь сколько угодно потомков, но только одного родителя, что позволяет создавать иерархические деревья наследования объектов.

Создадим объект-родитель TGraphObject, в рамках которого будут инкапсулированы поля и методы, общие для всех остальных объектов:

type

TGraphObj = object

Private {Поля объекта будут скрыты от пользователя}

X,Y: Integer; {Координаты реперной точки}

Color: Word; {Цвет фигуры}

Public {Методы объекта будут доступны пользователю}

Constructor Init(aX,aY: Integer; aColor: Word);

{Создает экземпляр объекта}

Procedure Draw(aColor: Word); Virtual;

{Вычерчивает объект заданным цветом aColor}

Procedure Show;

{Показывает объект - вычерчивает его цветом Color}

Procedure Hide;

{Прячет объект - вычерчивает его цветом фона}

Procedure MoveTo(dX,dY: Integer);

{Перемещает объект в точку с координатами X+dX и Y+dY}

end; {Конец описания объекта TGraphObj}

В дальнейшем предполагается создать объекты-потомки от TGraphObj, реализующие все специфические свойства точки, линии, окружности и прямоугольника. Каждый из этих графических объектов будет характеризоваться положением на экране (поля X и Y) и цветом (поле Color). С помощью метода Draw он будет способен отображать себя на экране, а с помощью свойств «показать себя» (метод Show) и «спрятать себя» (метод Hide) сможет перемещаться по экрану (метод MoveTo). Учитывая общность свойств графических объектов, объявляем абстрактный объект TGraphObj, который не связан с конкретной графической фигурой. Он объединяет в себе все общие поля и методы реальных фигур и будет служить родителем для других объектов.

Директива Private в описании объекта открывает секцию описания скрытых полей и методов. Перечисленные в этой секции элементы объекта «не видны» программисту, если этот объект он получил в рамках библиотечного ТР(/-модуля. Скрываются обычно те поля и методы, к которым программист (в его же интересах!) не должен иметь непосредственного доступа. В данном примере он не может произвольно менять координаты реперной точки (X.Y), т.к. это не приведет к перемещению объекта. Для изменения полей X и Y предусмотрены входящие в состав объекта методы Init и MoveTo. Скрытые поля и методы доступны в рамках той программной единицы (программы или модуля), где описан соответствующий объект. В дальнейшем предполагается, что программа будет использовать модуль GraphObj с описанием объектов. Скрытые поля будут доступны в модуле GraphObj, но недоступны в использующей его основной программе. Разумеется, в рамках реальной задачи создание скрытых элементов объекта вовсе необязательно. В данном случае они введены в объект TGraphObj лишь для иллюстрации возможностей ООП.

Директива public отменяет действие директивы private, поэтому все следующие за public элементы объекта доступны в любой программной единице. Директивы private и public могут произвольным образом чередоваться в пределах одного объекта.

Вариант объявления объекта TGraphObj без использования механизма private...public:

type

TGraphObj = object

X,Y: Integer;

Color: Word;

Constructor Init(aX,aY: Integer; aColor: Word);

Procedure Draw(aColor: Word); Virtual;

Procedure Show;

Procedure Hide;

Procedure MoveTo(dX,dY: Integer);

end;

Описания полей ничем не отличаются от описания обычных переменных. Полями могут быть любые структуры данных, в том числе и другие объекты. Используемые в примере поля X и Y содержат координату реперной (характерной) точки графического объекта, а поле Color - его цвет. Реперная точка характеризует текущее положение графической фигуры на экране и, в принципе, может быть любой ее точкой.

В данном примере она совпадает с координатами точки в описываемом ниже объекте TPoint, с центром окружности в объекте TCircle, первым концом прямой в объекте TLine и с левым верхним углом прямоугольника в объекте TRect.

Для описания методов в ООП используются традиционные для Паскаля процедуры и функции, а также особый вид процедур - конструкторы и деструкторы. Конструкторы предназначены для создания конкретного экземпляра объекта, ведь объект - это тип данных, т.е. «шаблон», по которому можно создать сколько угодно рабочих экземпляров данных объектного типа (типа TGraphOhj, например). Зарезервированное слово constructor, используемое в заголовке конструктора вместо procedure, предписывает компилятору создать особый код пролога, с помощью которого настраивается, так называемая, таблица виртуальных методов (см. ниже). Если в объекте нет виртуальных методов, в нем может не быть ни одного конструктора, наоборот, если хотя бы один метод описан как виртуальный (с последующим словом Virtual, см. метод Draw), в состав объекта должен входить хотя бы один конструктор, и обращение к конструктору должно предшествовать обращению к любому виртуальному методу.

Типичное действие, реализуемое конструктором, состоит в наполнении объектных полей конкретными значениями. Следует заметить, что разные экземпляры одного и того же объекта отличаются друг от друга только содержимым объектных полей, в то время как каждый из них использует одни и те же объектные методы. В данном примере конструктор Init объекта TGraphObj получает все необходимые для полного определения экземпляра данные через параметры обращения аХ, aY и aColor.

Процедура Draw предназначена для вычерчивания графического объекта. Эта процедура будет реализовываться в потомках объекта TGraphObj по-разному. Например, для визуализации точки следует вызвать процедуру PutPixel, для вычерчивания линии - процедуру Line и т.д. В объекте TGraphObj процедура Draw определена как виртуальная («воображаемая»). Абстрактный объект TGraphObj не предназначен для вывода на экран, однако наличие процедуры Draw в этом объекте говорит о том, что любой потомок TGraphObj должен иметь собственный метод Draw, с помощью которого он может показать себя на экране.

При трансляции объекта, содержащего виртуальные методы, создается, так называемая, таблица виртуальных методов (ТВМ), количество элементов которой равно количеству виртуальных методов объекта. В этой таблице будут храниться адреса точек входа в каждый виртуальный метод. В приведенном примере ТВМ объекта TGraphObj хранит единственный элемент - адрес метода Draw. Первоначально элементы ТВМ не содержат конкретных адресов. Если бы был создан экземпляр объекта TGraphObj с помощью вызова его конструктора Init, код пролога конструктора поместил бы в ТВМ нужный адрес родительского метода

Draw. Далее мы создадим несколько потомков объекта TGraphObj. Каждый из них будет иметь собственный конструктор, с помощью которого ТВМ каждого потомка настраивается так, чтобы ее единственный элемент содержал адрес нужного метода Draw. Такая процедура называется поздним связыванием объекта. Позднее связывание позволяет методам родителя обращаться к виртуальным методам своих потомков и использовать их для реализации специфичных для потомков действий.

Наличие в объекте TGraphObj виртуального метода Draw позволяет легко реализовать три других метода объекта: чтобы показать объект на экране в методе Show, вызывается Draw с цветом aColor, равным значению поля Color, а чтобы спрятать графический объект, в методе Hide вызывается Draw со значением цвета GetBkCoior, т.е. с текущим цветом фона.

Рассмотрим реализацию перемещения объекта. Если потомок TGraphObj (например, TLine) хочет переместить себя на экране, он обращается к родительскому методу MoveTo. В этом методе сначала с помощью Hide объект стирается с экрана, а затем с помощью Show показывается в другом месте. Для реализации своих действий и Hide, и Show обращаются к виртуальному методу Draw. Поскольку вызов MoveTo происходит в рамках объекта TLine, используется ТВМ этого объекта и вызывается его метод Draw, вычерчивающий прямую. Если бы перемешалась окружность, ТВМ содержала бы адрес метода Draw объекта TCircle, и визуализация-стирание объекта осуществлялась бы с помощью этого метода.

Чтобы описать все свойства объекта, необходимо раскрыть содержимое объектных методов, т.е. описать соответствующие процедуры и функции. Описание методов производится обычным для Паскаля способом в любом месте раздела описаний, но после описания объекта. Например:

type

TGraphObj - object

end;

Constructor TGraphObj .Init;

begin

X:=aX;

Y:=aY; Color:=aColor

end;

Procedure TGraphObj-Draw;

begin

{Эта процедура в родительском объекте ничего не делает, поэтому экземпляры TGraphObj не способны отображать себя на экране. Чтобы потомки объекта TGraphObj были способны отображать себя, они должны перекрывать этот метод}

end;

Procedure TGraphObj.Show;

begin

Draw(Color)

end;

Procedure TGraphObj.Hide;

begin

Draw(GetBkColor)

end;

Procedure TGraphObj.MoveTo;

begin

Hide;

X := X+dX;

Y := Y+dY;

Show

end;

Следует отметить два обстоятельства. Во-первых, при описании методов имя метода дополняется спереди именем объекта, т.е. используется составное имя метода. Это необходимо по той простой причине, что в иерархии родственных объектов любой из методов может быть перекрыт в потомках. Составные имена четко указывают принадлежность конкретной процедуры. Во-вторых, в любом объектном методе можно использовать инкапсулированные поля объекта почти так, как если бы они были определены в качестве глобальных переменных. Например, в конструкторе TGraph.Init переменные в левых частях операторов присваивания представляют собой объектные поля и не должны заново описываться в процедуре. Более того, описание

Constructor TGraphObj.Init;

var

X,Y: Integer; {Ошибка!}

Color: Word; {Ошибка!}

begin

end;

вызовет сообщение о двойном определении переменных X, Y и Color (в этом и состоит отличие в использовании полей от глобальных переменных: глобальные переменные можно переопределять в процедурах, в то время как объектные поля переопределять нельзя).

Следует обратить внимание: абстрактный объект TGraphObj не предназначен для вывода на экран, поэтому его метод Draw ничего не делает. Однако методы Hide, Show и MoveTo «знают» формат вызова этого метода и реализуют необходимые действия, обращаясь к реальным методам Draw своих будущих потомков через соответствующие ТВМ. Это и есть полиморфизм объектов.

Создадим простейшего потомка от TGraphObj - объект TPoint, с помощью которого будет визуализироваться и перемещаться точка. Все основные действия, необходимые для этого, уже есть в объекте TGraphObj, поэтому в объекте TPoint перекрывается единственный метод - Draw.

type

TPoint = object(TGraphObj)

Procedure Draw(aColor); Virtual;

end;

Procedure TPoint.Draw;

begin

PutPixel(X,Y,Color) {Показываем цветом Color пиксель с координатами X иУ}

end;

В новом объекте TPoint можно использовать любые методы объекта-родителя TGraphObj. Например, вызвать метод MoveTo, чтобы переместить изображение точки на новое место. В этом случае родительский метод TGraphObj.MoveTo будет обращаться к методу TPoint.Draw, чтобы спрятать и затем показать изображение точки. Такой вызов станет доступен после обращения к конструктору Init объекта TPoint, который нужным образом настроит ТВМ объекта. Если вызвать TPoint.Draw до вызова Init, его ТВМ не будет содержать правильного адреса, и программа «зависнет».

Чтобы создать объект-линию, необходимо ввести два новых поля для хранения координат второго конца. Дополнительные поля требуется наполнить конкретными значениями, поэтому нужно перекрыть конструктор родительского объекта:

type

TLine - object(TGraphObj)

dX,dY: Integer; {Приращения координат второго конца}

Constructor Init(Xl,Yl5X2,Y2: Integer; aColor: Word);

Procedure Draw(aColor: Word); Virtual;

end;,

Constructor TLine.Init;

{Вызывает унаследованный конструктор TGraphObj для инициализации полей X, Y и Color. Затем инициализирует поля dX и dY}

begin

{Вызываем унаследованный конструктор}

Inherited Init(XI,Yl,aColor);

{Инициируем поля dX и dY}

dX:=X2-Xl;

dY := Y2-Y1

end;

Procedure Draw;

begin

SetColor(Color); (Устанавливаем цвет Color}

Line(X,Y,X+dX,Y+dY) {Вычерчиваем линию}

end;

В конструкторе TLine.Init для инициализации полей X, Y и Color, унаследованных от родительского объекта, вызывается унаследованный конструктор TGraph.Init, для чего используется зарезервированное слово inherited (англ.- унаследованный):

Inherited Init(XI,Yl,aColor);

С таким же успехом можно использовать и составное имя метода:

TGraphObj.Init(Xl,Yl,aColor);

Для инициализации полей dX и dY вычисляется расстояние в пикселах по горизонтали и вертикали от первого конца прямой до ее второго конца. Это позволяет в методе TLine.Draw вычислить координаты второго конца по координатам первого и смещениям dX и dY. В результате простое изменение координат реперной точки X, Y в родительском методе TGraph.MoveTo перемещает всю фигуру по экрану.

Теперь нетрудно реализовать объект TCircle для создания и перемещения окружности:

type

TCircle = object(TGraphObj)

R: Integer; {Радиус}

Constructor Init(aX,aY,aR: Integer;

Procedure Draw(aColor: Virtual);

end;

Constructor TCircle.Init;

begin

Inherited Init(aX,aY,aCoIor);

R:=aR

end ;

aCoIor: Word)

Procedure TCircle.Draw;

begin

SetColor(aColor); (Устанавливаем цвет Color}

Circle(X,Y,R) {Вычерчиваем окружность}

end;

В объекте TRect, с помощью которого создается и перемещается прямоугольник, учитывается то обстоятельство, что для задания прямоугольника требуется указать четыре целочисленных параметра, т.е. столько же, сколько для задания линии. Поэтому объект TRect удобнее породить не от TGraphObj, а от TLine, чтобы использовать его конструктор Init:

type

TRect = object(TLine)

Procedure Draw(aColor: Word);

end;

Procedure TRect.Draw;

begin

SetColor(aColor);

Rectangle(X,Y,X+dX,Y+dY) {Вычерчиваем прямоугольник}

end;

Чтобы описания графических объектов не мешали созданию основной программы, нужно оформить эти описания в отдельном модуле GraphObj:

Unit GraphObj; Interface

{Интерфейсная часть модуля содержит только объявления объектов}

type

TGraphObj = object

end;

TPoint = object(TGraphObj)

end;

TLine - object(TGraphObj)

end;

TCircle = object(TGraphObj)

end;

TRect = object(TLine)

end;

Implementation

{Исполняемая часть содержит описания всех объектных методов}

Uses Graph;

Constructor TGraphObj.Init;

end.

В интерфейсной части модуля приводятся лишь объявления объектов, подобно тому как описываются другие типы данных, объявляемые в модуле доступными для внешних программных единиц. Расшифровка объектных методов помещается в исполняемую часть implementation, как если бы это были описания обычных интерфейсных процедур и функций. При описании методов можно опускать повторное описание в заголовке параметров вызова. Если они все же повторяются, они должны в точности соответствовать ранее объявленным параметрам в описании объекта. Например, заголовок конструктора TGraphObj.Init может быть таким:

Constructor TGraphObj.Init;

или таким:

Constructor TGraphObj.Init(aX,aY: Integer; aColor: Word);

СОЗДАНИЕ МОДУЛЬНЫХ ПРОГРАММ, ЭЛЕМЕНТЫ ТЕОРИИ МОДУЛЬНОГО ПРОГРАММИРОВАНИЯ