Проекции точки
Лекция 2
Проекции точки.
2.1. Метод проецирования.
Для построения изображения предметов на плоскости пользуются методом проецирования. Слово «проекция» - латинское, от глагола projecere, что в переводе означает «бросать вперед».
Следовательно, проекция это изображение предмета, «отброшенное» на плоскость при помощи лучей. Спроецировать предмет на плоскость это значит построить его изображение на плоскости.
Проекции разделяются на центральные и параллельные.
Рис. 2.1.
2.1.1. Идея центрального проецирования видна из рис. 2.1. Пусть заданы в пространстве точка S центр проекции и плоскость П1 плоскость проекции. Плоскость П1 и точка S составляют аппарат центральной проекции. Проецируемый треугольник АВС называется оригиналом, или натурой. Чтобы спроецировать заданный оригинал, нужно из центра проекции S через вершины треугольника провести проецирующие лучи до пересечения с плоскостью проекции П1. Точки пересечения А1, В1, С1, называются центральными проекциями вершин А, В, С, на плоскость П1, а треугольник А1В1С1 центральной проекции треугольника АВС. Центральные проекции (перспективу) применяют в архитектурных чертежах, в аэрофотосъемке, рисовании и др. Вследствие трудностей при построении изображений и их измерении, а также при чтении чертежей, в машиностроительном черчении центральными проекциями не используются.
2.1.2. В начертательной геометрии используют метод параллельного проецирования (рис. 2.2.). Как и в предыдущем случае, выбирают плоскость проецирования П1, но вместо центра проекции S задают направление проецирования s, т. е. считают, что точка S центр проекции расположена в бесконечности и поэтому проецирующие лучи параллельны между собой. Плоскость П1 и направление s составляют аппарат параллельной проекции. Чтобы спроецировать треугольник АВС на плоскость П1, через вершины А, В, С проводят проецирующие лучи параллельно направлению проецирования s. Треугольник А1В1С1, образованный пересечением лучей АА1, ВВ1, СС1 с плоскостью П1, и будет параллельной проекцией треугольника АВС.
Рис. 2.2.
Параллельные проекции разделяются на прямоугольные и косоугольные. Если проецирующие углы перпендикулярны к плоскости проекций (рис. 2.3.), то способ проецирования называется прямоугольным, а полученные при этом проекции прямоугольными, или ортогональными. Если же угол наклона лучей не равен 90, то подобная параллельная проекция называется косоугольной. В черчении используют, главным образом, прямоугольные проекции.
Рис. 2.3.
2.2. Задание точки на комплексном чертеже Монжа (эпюр Монжа)
2.2.1. Пространственная (или декартовая) система координат. Плоскости проекций
2.2.2 Проецирование точки на две плоскости проекций. Четверти пространства
2.2.3 Проекции точки на три плоскости проекций. Октанты пространства
2.2.4 Точки проекций общего и частного положения
2.2.1 Пространственная (или декартовая) система координат. Плоскости проекций
Вверх
В данном курсе будут рассмотрены чертежи, получаемые ортогональным проецированием на две или более взаимно перпендикулярные плоскости проекций (комплексный чертеж) и путем перепроецирования вспомогательной проекции предмета на основную аксонометрическую плоскость проекций (аксонометрический чертеж).
Рис. 2. 4.
Из рис. 2. 4. видно, что проекции А1 отвечает бесчисленное множество точек (А, A, A''), лежащих на проецирующем луче, идущем из А1 перпендикулярно к плоскости проекции П1.
Совокупность двух прямоугольных проекций на две взаимно перпендикулярные плоскости позволяет однозначно определить форму и положение предмета в пространстве. Однако в черчении при построении изображений чаще используют три плоскости проекции и потому рассмотрим законы проецирования на три плоскости проекции.
Пусть заданы три взаимно перпендикулярные плоскости проекций, образующих прямой трехгранный угол (рис.2.5.): П1 горизонтальная, П2 фронтальная и П3 профильная плоскости проекций; линии Оx, Оy, Оz взаимного пересечения плоскостей проекций называются осями проекций, а точка О началом осей проецирования.
Рис. 2.5.
В пространстве трехгранного угла задана точка А и требуется построить ее проекции на плоскости П1, П2, П3 (точку можно рассматривать как вершину некоторого предмета, например параллелепипеда, изображенного на рис.2.6.). Для этого из точки А проводят проецирующие лучи АА1, АА2, АА3, перпендикулярные к плоскостям проекций, до пересечения с ними. В результате пересечения получают А1 горизонтальную, А2 фронтальную, А3 профильную проекции точки А. Прямая АА1 называется горизонтально проецирующим, АА2 фронтально проецирующим, АА3 профильно проецирующим лучами. Проецирующие лучи АА1 и АА2 определяют плоскость перпендикулярную к оси Ох и плоскостям П1, П2 пересекает плоскости проекций по прямым А1Ах и А2АХ, перпендикулярно к оси Ох. Точку пересечения этой плоскости с осью Ох обозначают Ах. рассуждая аналогично, получают прямые А1Ау и А3Ау, перпендикулярные к оси Оу, и прямые А2Az и А3Az, перпендикулярные к оси Оz.
Рис. 2.6.
2.2.2 Проецирование точки на две плоскости проекций. Четверти пространства
Вверх
Две взаимно перпендикулярные плоскости проекций П1 горизонтальная плоскость проекций, П2 фронтальная плоскость проекций делят пространство на четыре квадранта (четверти):
I октант передний верхний,
II октант задний верхний,
III октант задний нижний,
IV октант - передний нижний.
Плоскости П1 и П2 пересекаются по прямой, называемой осью проекций (осью абсцисс).
Пусть дана точка А в I октанте и требуется спроецировать её (ортогонально) на плоскости П1 и П2 (рис. 2.7).
Рис. 2.7
Спроецировать ортогонально точку А значит геометрически опустить из точки А на плоскости проекций П1 и П2 перпендикуляры.
АА2^П2
АА1^П1
Построим комплексный чертеж (эпюр) точки А, т.е. плоский чертеж точка А, состоящий из двух проекций точки А. Для этого мысленно удаляют точку А и проецирующие прямые АА1 и АА2, а затем вращают плоскости П1 вокруг оси Х до совмещения с плоскостью П2, вращая плоскость П1 так, чтобы передняя полуплоскость П1 оказалась под осью Х в совмещенном положении (см. стрелки рис. 2.1).
Прямая линия А2А1, соединяющая две проекции точки на чертеже, называется линией связи.
Проще начинать строить эпюр точки А с фронтальной проекции А2, т.к фронтальная плоскость совпадает с плоскостью эпюра, и поэтому расположение точки А2 относительно оси Х12 на эпюре будет таким же, как и на оригинале (рис. 2.8).
Рис. 2.8.
Отрезок А1Ах равен расстоянию точки А до фронтальной плоскости проекций П2, называемому ординатой точки А или глубиной точки А. А1Ах=АА2=УА.
Отрезок А1Ах равен расстоянию точки А до горизонтальной плоскости проекций П, называемому аппликатой точки А или высотой точки А.
А2Ах=АА1=ZА
Прочитать чертеж точки А, значит перегнуть его мысленно по оси Хх (ось абсцисс), восстановить перпендикуляры из проекций точки А, и тогда точка пересечения их будет точкой А, заданной комплексным чертежом. Таким же образом доказывается и то, что две проекции точки вполне определяют положение точки в пространстве.
Построение чертежей точек по координатам упрощается, если нанести координатные оси аппликат Z и ординат Y на наглядном рисунке плоскостей проекций П1 и П2 и на комплексном чертеже точки (рис. 2.9)
Рис. 2.9.
Таблица 1
В начертательной геометрии принята левая система координат, когда влево направлена положительная полуось абсцисс Х. Обе проекции точки могут располагаться как над осью Х-ов в зависимости от того, в каком квадранте будет расположена точка.
Построение эпюра (чертежа) точки по наглядному рисунку точки в пространстве, расположенной в той или иной четверти, проще начинать с построения фронтальной проекции точки, откладывая на эпюре по направлению линии связи размер высоты точки, а после этого надо представить себе и решить, куда вниз или вверх будет перемещаться горизонтальная проекция точки с той горизонтальной полуплоскостью, на которой она расположена, и только тогда можно решить, где над осью Х-ов, или под осью Х-ов будет расположена горизонтальная проекция точки на эпюре.
Построение наглядного рисунка точки в пространстве, расположенной в том или ином квадранте по заданному эпюру точки, лучше также начинать с фронтальной проекции, откладывая размер А2Ах высоты точки А. После этого надо решить вопрос, на какой горизонтальной полуплоскости проекции, передней или задней, должна лежать горизонтальная проекция точки. Если на эпюре горизонтальная проекция точки лежит под осью абсцисс, то она на наглядном рисунке будет расположена на передней горизонтальной полуплоскости. Если над осью абсцисс, то на задней горизонтальной полуплоскости.
2.2.3 Проекции точки на три плоскости проекций. Октанты пространства
Вверх
В начертательной геометрии принято от пространственного изображения точки и ее проекций переходить к плоскому, или комплексному, чертежу, образованному вращением плоскости проекций вокруг осей проекций (рис., 2.10.).
Рис. 2.10.
Сохраняя неподвижной фронтальную плоскость проекций П2, горизонтальную плоскость П1 поворачивают вокруг оси Ох вниз на 90о, а профильную вокруг оси Оz вправо на 90о до их совмещения с фронтальной плоскостью проекций. Направление изображения показано на рис. 1.6.. стрелками. Полученное изображение трех плоскостей проекций вместе с изображенными на них проекциями А1, А2, А3 точки А называют комплексным чертежом точки А. на комплексном чертеже ось Оу раздваивается и кроме вертикального положения Оу1 (вниз от точки О) занимает и второе горизонтальное положение Оу3 (вправо от точки О).
Прямую, соединяющую две проекции точки на комплексном чертеже, называют линией связи.
Из анализа рис. 1.7.. вытекают следующие основные положения:
а) горизонтальная А1 и фронтальная А2 проекции точки всегда расположены на вертикальной линии связи, перпендикулярной к оси проекций Ох;
б) Фронтальная А2 и профильная А3 проекции точки всегда расположены на горизонтальной линии связи, перпендикулярной к оси проекций ОZ;
в) горизонтальная А1 и профильная А3 проекции точки всегда расположены на линиях связи, пересекающихся на биссектрисе угла у1Оу3. Эта биссектриса получила наименование постоянной прямой чертежа (линия К), а линия связи А1А0А3 ломаной или горизонтально- вертикальной линии связи.
В начертательной геометрии часто приходится решать задачи на построение третьей проекции фигуры по двум данным. Для этого прежде нужно научиться строить третью проекцию точки, если известны две ее проекции. Выполнить это можно тремя способами.
Проекционный способ (рис 1.7.). Из фронтальной проекции А2 проводят горизонтальную линию связи. Из горизонтальной проекции А1 опускают перпендикуляр на ось Оу1, получают точку Ау1, и при помощи циркуля или прямоугольного равнобедренного треугольника находят на оси Оу3 положение точки Ау3. из этой точки проводят вертикальную линию связи до пересечения с линией связи, проведенной из А2. Точка А3 профильная проекция точки А.
Координатный способ. Из фронтальной проекции А2 проводят горизонтальную линию связи. Измеряют циркулем расстояние от проекции А1 до оси Ох (глубину точки, или координату уА) и откладывают этот отрезок на линии связи вправо от точки АZ. Получают профильную проекцию А3.
Способ с использованием постоянной прямой чертежа. Из фронтальной проекции А2 проводят горизонтальную линию связи. Из горизонтальной проекции А1 проводят линию связи до пересечения в точке А0 с постоянной прямой К, т.е. биссектрисой угла у1Оу3. из точки А0 проводят вертикальную линию связи до пересечения с линией, проведенной из фронтальной проекции А2.
Предпочтительней второй и третий способы, требующие меньшего числа построений и позволяющие использовать чертежные приборы.
В пространстве может быть взято множество точек, занимающих по отношению к плоскостям проекции различное положение. Например, пирамида и срезанный параллелепипед имеют 13 вершин- точек, различно расположенных относительно плоскостям П1, П2, П3. Чтобы определить положение каждой из этих точек в отдельности, нужно знать три ее измерения- широту, высоту, глубину.
Рис.2.11.
Z высота точки (рис. 2.11.) определяется ее расположением от горизонтальной плоскости проекций или удалением ее фронтальной проекции А2 от точки Ох (АА1 = А2Ах).
У глубину точки измеряют ее расстоянием от фронтальной плоскости проекций или удалением ее горизонтальной проекции А1 от оси Ох (АА2 = А1Ах).
Х широтой точки является ее удаление от профильной плоскости проекций или расстояние от точки АХ до начала осей проекции О (АА3 = АХО). Все эти утверждения вытекают из рассмотрения треугольников АА1АХА2 и АА1АУА3.
Если принять плоскость и оси проекции за координатные плоскости и оси координат х у, z, то положение любой точки пространства может быть задано тремя ее координатами. В этом случае отрезок АА3 = АХО выражает координату х, т.е. расстояние от точки до плоскости П3, отрезок АА2 = А1АХ координату у, т.е. расстояние от точки до плоскости П2, и отрезок АА1 = А2АХ координату z, т.е. расстояние от точки до плоскости П1. Запись типа А (10, 16, 8) означает, что координата х точки А равна 10мм, координата у=16 мм, координата z= 8 мм.
Рассмотрим на примере построение проекций точки по ее координатам (измерениям). Задана точки А (25, 15, 20), т.е. х = 25мм, у = 15мм, z = 20мм. Нужно построить комплексный чертеж точки в системе трех плоскостей проекции.
Рис. 2.12.
Проводят оси Ох, Оу, Оz (рис. 2.12.). По оси Ох влево от точки О откладывают координату х = 25мм и через полученную точку Ах проводят вертикальную линию связи. На этой линии вниз от Ах откладывают значение координаты у = 15мм и получают горизонтальную проекцию А1 точки А. на этой же линии вверх от Ах откладывают значение координаты z = 20мм и получают фронтальную проекцию А2 точки А. Найденные проекции А1 и А2 определяют положение точки. Если нужно построить третью, профильную, проекцию, из проекции А2 проводят горизонтальную линию связи и откладывают вправо от точки Аz отрезок, равный значению координаты у (АяА3 = 15мм). А3 профильная проекция точки А.
На рисунке 2.13. построены комплексные чертежи точек В (20,0,5) и С (15,0,0).
Рис. 2.13.
2.2.4 Точки проекций общего и частного положения.
Вверх
Наиболее удобной для фиксирования положения геометрической фигуры в пространстве является декартова система координат, состоящая из трех взаимно перпендикулярных плоскостей:
П1 горизонтальная плоскость проекций;
П2 фронтальная плоскость проекций;
П3 профильная плоскость проекций;
Ось х ось абсцисс;
Ось у ось ординат;
Ось z ось аппликат;
О начало координат.
Положительными направлениями оси считают: для оси х влево от начала координат, для оси у в стороны зрителя от плоскости П2, для оси z вверх от плоскости П1, противоположные направления осей считаются отрицательными (рис. 2.14.).
Рис. 2.14.
Плоскости проекции делят пространство на 8 частей октантов, каждый из которых представляет собой прямоугольный треугольник, где гранями являются части плоскостей проекций, а ребрами оси координат.
Учитывая при отсчете координат направления осей х, у, z, получим знаки координат для каждого октанта (табл. 2).
Возможны следующие случаи.
Точка расположена в пространстве. В этом случае ее зададут тремя координатами (измерениями). Все три проекции точки удалены от осей проекций (рис. 2.9.).
Точка находится на одной из плоскостей проекций П1, П2 или П3. В этом случае ее задают двумя действующими координатами, не равными нулю. Одна проекция совпадает с самой точкой, а две другие лежат на осях. На рисунке 1.10. изображены проекции точки В (20, 0, 15), лежащей в плоскости проекций П2. В этом случае фронтальная проекция В2 совпадает с самой точкой В, горизонтальная проекция В1 лежит на оси Ох, а профильная В3 на оси Оz.
Точка находится на одной из осей проекций Ох, Оу, Оz. В этом случае ее задают одной действительной координатой, не равной нулю. Две проекции совпадают с самой точкой, а третья находится в точке О начале осей проекций. На рисунке 2.10 изображены проекции точки С (15, 0, 0), лежащей на оси Ох. В этом случае горизонтальная С1 и фронтальная С2 проекции совпадают с самой точкой С, а профильная проекция С3 находится в точке О.
К чтению чертежа следует отнести решение таких вопросов:
а) определение третьей проекции точки по двум данным;
б) определение координат точки и ее положения относительно плоскостей проекции;
в) построение аксонометрического изображения точки по ее комплексному чертежу;
г) анализ взаимного расположения нескольких точек относительно плоскостей проекции и др.
На рисунке 2.15. заданы проекции точки А и В. Эти точки расположены в пространстве, так как ни одна из их координат не равна нулю. Широта точки А больше широты точки В, так как отрезок ОАх больше отрезка ОВх. Следовательно, точка А дальше отстоит от плоскости П3, чем точка В. Глубины этих точек равны вследствие равенства координат у (А1Ах = В1Вх). Из этого следует, что точки одинаково удалены от плоскости проекции П2. Высоты у точек различны. Точка В дальше от плоскости П1 на величину, равную отрезку В2В0.
Рис. 2.15.
2.3. Обратимость чертежа
Обратимость чертежа. Проецированием на одну плоскость проекций получается изображение, которое не позволяет однозначно определить форму и размеры изображенного предмета. Проекция А1 (см. рис. 2.4.) не определяет положение самой точки в пространстве, так как неизвестно, на какое расстояние она удалена от плоскости проекций П1. В таких случаях говорят о необратимости чертежа, так как по такому чертежу невозможно воспроизвести оригинал. Для исключения неопределенности изображения дополняют необходимыми данными. В практике применяют различные способы дополнения однопроекционного чертежа.
Проекции точки