Болезни репарации ДНК
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ………………………………………………………………………4
Глава 1. Изменчивость……………………………………………….….6
1.1. Типы изменчивости……………………………………………………......6
1.2 Экзогенные и эндогенные мутагены. Классификация мутаций……..…14
1.3. Динамика генетического груза у человека………………………………17
1.4.Репарация ДНК……………………………………………………………..20
Глава 2. Болезни репарации ДНК……………………………………24
2.1. Пигментная ксеродерма………………………………………….………..24
2.2. Атаксия-телеангиэктазия. Синдром Луи-Бар………………….…….…..27
2.3 Анемия Фанкони……………………………………………………….…..31
ЗАКЛЮЧЕНИЕ………………………………………………………………...38
БИБЛИОГРАФИЧЕСКИЙ СПИСОК………………………………………...40
ПРИЛОЖЕНИЯ…………………………………………………………….…..41
ВВЕДЕНИЕ
Актуальность исследования. Изменчивость возникает под воздействием внешней среды или появляется в результате хромосомных перестроек. Факторы среды оказывают на живые системы биологическое и генетическое воздействие и вызывают тем самым соответственно биологический и генетический эффект. Биологический эффект проявляется либо ненаследственными изменениями, не затрагивающими генотип особи, либо ее гибелью. Генетический эффект проявляется изменениями фенотипа, вызванными нарушениями наследственных структур.
Мутации - это наследственные изменения генотипического материала. Они характеризуются как редкие, случайные, ненаправленные события. Большая часть мутаций приводит к различным нарушениям нормального развития, некоторые из них летальны, однако вместе с тем многие мутации являются исходным материалом для естественного отбора и биологической эволюции.
Несмотря на свои «преимущества», ДНК постоянно подвергается химическим изменениям, как спонтанным, так и индуцируемым мутагенами и даже клеточными метаболитами. Еще одна обычная причина повреждений ДНК - радиация и ультрафиолетовое облучение. Большинство происходящих с ДНК изменений недопустимы: они либо приводят к вредным мутациям, либо блокирую репликацию ДНК и вызывают гибель клеток. Поэтому все клетки имеют специальные системы исправления повреждений, репарации ДНК. Нарушение этих систем губительно. Репарация УФ повреждений ДНК нарушена у людей, страдающих тяжелым наследственным заболеванием - пигментной ксеродермой. Такие больные не могут бывать на солнце и обычно умирают в раннем возрасте от какого-либо злокачественного заболевания. Данные факты определили актуальность нашего исследования.
Цель исследования: изучить изменчивость генетической информации и болезни репарации ДНК.
Исходя из цели были поставлены следующие задачи исследования:
1.раскрыть понятие изменчивости;
2. рассмотреть классификации изменчивости генетического материала;
3. изучить репарацию ДНК;
4. изучить болезни репарации ДНК.
Объект исследования: изменчивость и репарация ДНК.
Предмет исследования: изменчивость, мутации, репарация ДНК, болезни репарации ДНК.
Методы исследования: теоретический анализ и синтез.
Глава 1. Изменчивость
1.1. Типы изменчивости
Изменчивость (биологическая), разнообразие признаков и свойств у особей и групп особей любой степени родства. Изменчивость присуща всем живым организмам, поэтому в природе отсутствуют особи, идентичные по всем признакам и свойствам.
Термин «Изменчивость» употребляется также для обозначения способности живых организмов отвечать морфофизиологическими изменениями на внешние воздействия и для характеристики преобразований форм живых организмов в процессе их эволюции. [1]
Изменчивость можно классифицировать в зависимости от причин, природы и характера изменений, а также целей и методов исследования.
Различают изменчивость: наследственную (генотипическую) и ненаследственную (паратипическую); индивидуальную и групповую; прерывистую (дискретную) и непрерывную; качественную и количественную; независимую изменчивость разных признаков и коррелятивную (соотносительную); направленную (определенную, по Ч. Дарвину) и ненаправленную (неопределенную, по Ч. Дарвину); адаптивную (приспособительную) и неадаптивную. При решении общих проблем биологии и особенно эволюции наиболее существенно подразделение изменчивости, с одной стороны, на наследственную и ненаследственную, а с другой - на индивидуальную и групповую. Все категории изменчивости могут встречаться в наследственной и ненаследственной, групповой и индивидуальной изменчивости. [1]
Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях. В каждой достаточно длительно (в ряде поколений) существующей совокупности особей спонтанно и ненаправленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с разными уже имеющимися в совокупности наследственными свойствами. Изменчивость, обусловленную возникновением мутаций, называют мутационной, а обусловленную дальнейшим перекомбинированием генов в результате скрещивания - комбинационной.
В понятие ненаследственной изменчивости входят те изменения признаков и свойств, которые у особей или определенных групп особей вызываются воздействием внешних факторов (питание, температура, свет, влажность). Такие ненаследственные признаки (модификации) в их конкретном проявлении у каждой особи не передаются по наследству, они развиваются у особей последующих поколений лишь при наличии условий, в которых они возникли. Такая изменчивость называется также модификационной. Например, окраска многих насекомых при низкой температуре темнеет, при высокой - светлеет; однако их потомство будет окрашено независимо от окраски родителей в соответствии с температурой, при которой оно само развивалось. Они возникают под влиянием внешних воздействий (например, температурных или химических) и выражаются в качественных или количественных отклонениях от исходной формы, обычно постепенно затухающих при последующем размножении. Они основаны, по-видимому, на изменениях относительно стабильных цитоплазматических структур. [1]
Между ненаследственной и наследственной изменчивостями существует тесная связь. Ненаследственных (в буквальном смысле) признаков и свойств нет, так как ненаследственные изменения являются отражением наследственно обусловленной способности организмов отвечать определенными изменениями признаков и свойств на воздействия факторов внешней среды. При этом пределы ненаследственных изменений определяются нормой реакции генотипа на условия среды.
Наследственную и ненаследственную изменчивости изучают как внутри отдельных совокупностей живых организмов, когда исследуют различия признаков отдельных особей (индивидуальная изменчивость), так и при сравнении между собой различных совокупностей особей (групповая изменчивость); в основе любых межгрупповых различий также лежит индивидуальная изменчивость. Даже в пределах близкородственных групп нет абсолютно идентичных особей, которые не различались бы по степени выраженности каких-либо наследственных или ненаследственных признаков и свойств. Ввиду сложности организации живых систем, даже у генотипически идентичных (например, однояйцевые близнецы) и развивающихся в практически одинаковых условиях особей всегда можно обнаружить хотя бы незначительные морфофизиологические различия, связанные с неизбежными флуктуациями условий среды и процессов индивидуального развития. Групповая изменчивость включает различия между совокупностями любых рангов - от различий между небольшими группами особей в пределах популяции до различий между царствами живой природы (животные - растения). [1]
В некоторых случаях различия между группами особей в пределах вида не связаны с различиями их генотипического состава, а обусловливаются модификационной изменчивость (различными реакциями сходных генотипов на разные внешние условия). Так называемая сезонная изменчивость обусловлена влиянием на развитие соответствующих поколений разных погодных условий (например, у некоторых насекомых и травянистых растений, дающих два поколения в год, весенние и осенние популяции различаются рядом признаков). Иногда сезонные формы могут быть результатом отбора разных генотипов (например, рано- и поздноцветущие формы трав на сенокосных лугах: в течение многих поколений устранялись особи, цветущие летом, во время сенокоса). Большой интерес представляет экологическая изменчивость - различия между группами особей одного вида, растущими или живущими в разных местах (возвышенности и низменности, заболоченные и сухие участки ). Часто такие формы называются экотипами. Возникновение экотипов также может быть результатом как модификационных изменений, так и отбора генотипов, лучше приспособленных к местным условиям. [4]
Наследственной изменчивостью обусловлены различные формы внутрипопуляционного полиморфизма. В некоторых популяциях наблюдается сосуществование двух или более ясно различимых форм (например, у двухточечной божьей коровки почти во всех популяциях встречаются черная форма с красными пятнами и красная форма с черными пятнами). В основе этого явления могут лежать разные эволюционные механизмы: неодинаковая приспособленность сосуществующих форм к условиям различных сезонов года, повышенная жизнеспособность гетерозигот, в потомстве которых постоянно выщепляются обе гомозиготные формы или другие, еще недостаточно изученные механизмы. [4]
Таким образом, и групповая, и индивидуальная изменчивости включают изменения как наследственной, так и ненаследственной природы.
Независимой изменчивости признаков противопоставляют коррелятивную изменчивость - взаимосвязанное изменение различных признаков и свойств: связь между ростом и весом особей (положительная корреляция) или темпом клеточного деления и величиной клеток (отрицательная корреляция). Корреляции могут быть обусловлены чисто генетическими причинами (плейотропия) или взаимозависимостями процессов становления определенных признаков и свойств в индивидуальном развитии особей (онтогенетические корреляции), а также сходными реакциями разных признаков и свойств на одни и те же внешние воздействия (физиологические корреляции). Наконец, корреляции могут отражать историю происхождения популяций из смеси двух или более форм, каждая из которых привносит не отдельные признаки, а комплексы взаимосвязанных признаков и свойств (исторические корреляции). Изучение коррелятивной изменчивости имеет важное значение в палеонтологии (например, при реконструкции вымерших форм по отдельным ископаемым остаткам), в антропологии (например, при восстановлении черт лица на основе изучения черепа), в селекции и медицине. [4]
Из этого следует возможность экспериментальных воздействий как на наследственную, так и на ненаследственную изменчивость. Первую можно усилить воздействием мутагенных факторов (излучения, температура, химические вещества). Размах и направление комбинационной изменчивости можно контролировать с помощью искусственного отбора. На ненаследственную изменчивость можно воздействовать, изменяя условия среды (питание, свет, влажность и т.д.), в которых протекает развитие организма.
Модификационная изменчивость
Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково. Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью. Однако другой признак - жирность молока - слабо подвержен изменениям условий среды, а масть животного - еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. [4]
Генотипическая изменчивость
Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутациями называются скачкообразные и устойчивые изменения единиц наследственности - генов, влекущие за собой изменения наследственных признаков. Термин «мутация» был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов. [5]
Мутации по характеру проявления бывают доминантными и рецессивными. Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными а несовместимые с жизнью - летальными. Мутации подразделяют по месту их возникновения. Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся - мутировавший - ген, мутации могут передаваться потомству. Такие мутации называют соматическими.
Комбинативная изменчивость
Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при мейозе и случайного их сочетания при скрещивании. Изменчивость может быть обусловлена не только мутациями, но и сочетаниями отдельных генов и хромосом, новая комбинация которых при размножении приводит к изменению определенных признаков и свойств организма. Такой тип изменчивости называют комбинативной наследственной изменчивостью. Новые комбинации генов возникают: [5]
1) при кроссинговере, во время профазы первого мейотического деления;
2) во время независимого расхождения гомологичных хромосом в анафазе первого мейотического деления;
3) во время независимого расхождения дочерних хромосом в анафазе второго мейотического деления
4) при слиянии разных половых клеток.
Сочетание в зиготе рекомбинированных генов может привести к объединению признаков разных пород и сортов.
Мутационная изменчивость
Мутации - качественные или количественные изменения ДНК клеток организма, приводящие к изменениям их генотипа. Мутационная теория была создана голландцем Гуго де Фризом, который и ввел этот термин. Начав в 1901 г. изучение наследования признаков у растений ослинника, он обнаружил, что, несмотря на то, что обычно удавалось предсказать появление растения с тем или иным фенотипом, иногда появлялись формы, имеющие признаки, не наблюдавшиеся в предыдущих поколениях. Ученый предположил, что такие аномалии связаны с возникновением каких-то фенотипически проявляющихся изменений в генотипе, которые, кроме того, могут передаваться потомству. [5]
Характеристика мутации:
1. Мутации - внезапные скачкообразные изменения наследственных факторов. Мутации представляют собой стойкие изменения наследственного материала.
2. Мутации - качественные изменения, они, как правило, не образуют непрерывного ряда вокруг средней величины. Мутации представляют собой ненаправленные изменения генотипа - они могут быть полезными (очень редко), вредными (большинство мутаций) и безразличными для данных условий существования организма. [5]
5. Генные (точечные) мутации
Точечные мутации связаны с изменением нуклеотидной последовательности ДНК одного гена.
Известны два механизма генных мутаций: замена одного основания на другое и изменение количества нуклеотидов - выпадение или вставка одного из них и, как следствие, изменение рамки считывания при транскрипции. Второй механизм приводит к более серьезным последствиям, поскольку при этом во время транскрипции происходит чтение совершенно иных триплетов и синтезируется белок с иной аминокислотной последовательностью. Если, например, в исходной последовательности…ААТ ГГЦ АЦГ ТАГ Г… произойдет выпадение тимидина в третьем положении - …ААГ ГЦА ЦГТ АГГ…, то вместо аминокислотной последовательности лей-про-цис-мет синтезируется последовательность фен-арг-ала-сер.
Хромосомные мутации
Этот тип мутаций связан со структурными изменениями хромосом. Не следует путать эти мутации с кроссинговером, при котором гомологические хромосомы обмениваются участками.
Делеция- это утрата хромосомой некоторого участка, который затем обычно уничтожается: [5]
А.Б.В.Г.Д. Е - А.Б.В.Г.Д.
В гомозиготном состоянии делеции обычно легальны, поскольку утрачивается довольно большой объем генетической информации.
Дупликация - удвоение участка хромосомы.
А.Б.В.Г. Д - А.Б.В.Б.В.Г. Д
Эти мутации часто возникают вследствие нарушения обмена участков между гомологичными хромосомами при конъюгации. Дупликации не обязательно наносят вред организму. В ряде случаев они позволяют увеличить набор генов, повышая генетическое богатство популяции. Инверсия - поворот отдельного фрагмента хромосомы на 180°; при этом число генов в хромосоме остается прежним, а изменяется лишь их последовательность. Несмотря на кажущуюся «безобидность» такого преобразования, оно может являться причиной нарушения процесса конъюгации во время мейоза, действуя как «ингибитор кроссинговера», а в некоторых случаях приводя к формированию нежизнеспособных гамет. [5]
1.2 Экзогенные и эндогенные мутагены. Классификация мутаций
Отдельные гены, хромосомы и геном в целом постоянно претерпевают разнообразные изменения. Хотя существуют механизмы репарации (восстановления) ДНК, часть повреждений и ошибок сохраняется. Изменения в последовательности и числе нуклеотидов в ДНК обозначают как мутации.
Мутации - инициальное звено патогенеза наследственных заболеваний.
В широком смысле термином «мутация» обозначают любые изменения генетического материала (пара нуклеотидов, ген, аллели, хромосомы, ядерный и митохондриальный геном). В узком значении термин «мутация» соотносят с изменениями на уровне гена, то есть генные мутации. [10]
Мутагены - причины мутаций - факторы химической, физической или биологической природы. Мутагенез (мутационный процесс) - изменения, приводящие к возникновению мутаций. Различают генные, хромосомные и геномные мутации.
Мутации могут быть полезными, вредными или нейтральными. Согласно современной классификации мутации принято делить на следующие группы.
1. Геномные мутации - связанные с изменением числа хромосом. Особый интерес представляет ПОЛИПЛОИДИЯ - кратное увеличение числа хромосом, т.е. вместо 2n хромосомного набора возникает набор 3n,4n,5n и более. Возникновение полиплоидии связанно с нарушением механизма деления клеток. В частности, нерасхождение гомологичных хромосом во время первого деления мейоза приводит к появлению гамет с 2n набором хромосом. [10]
2. Генные мутации связаны с изменением состава или последовательности нуклеотидов ДНК в пределах гена. Генные мутации наиболее важны среди всех категорий мутаций.
Мутации - это крупнейший биологический фактор, обуславливающий огромную наследственную изменчивость организмов, что дает материал для эволюции. [10]
Причинами мутаций могут быть естественные нарушения в метаболизме клеток (спонтанные мутации), так и действие различных факторов внешней среды (индуцированные мутации).
Чаще мутации вредны, так как признаки в норме являются результатом отбора и адаптируют организм к среде обитания. Мутация всегда изменяет адаптацию. Степень ее полезности или бесполезности определяется временем. Если мутация дает возможность организму лучше приспособиться, дает новый шанс выжить, то она "подхватывается" отбором и закрепляется в популяции.
Мутации бывают прямые и обратные. Последние встречаются гораздо реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность вторичной мутации в обратную сторону в той же точке очень мала, чаще мутируют другие гены.
Мутации чаще рецессивные, так как доминантные проявляются сразу же и легко "отбрасываются" отбором.
По характеру изменения генотипа мутации делятся на генные, хромосомные и геномные. [10]
Генные, или точковые, мутации - изменение нуклеотида в одном гене в молекуле ДНК, приводящее к образованию аномального гена, аследовательно, аномальной структуры белка и развитию аномального признака. Генная мутация - это результат "ошибки" при репликации ДНК.
Результатом генной мутации у человека являются такие заболевания, как серповиднокле-точная анемия, фенилкетонурия, дальтонизм, гемофилия. Вследствие генной мутации возникают новые аллели генов, что имеет значение для эволюционного процесса.
Хромосомные мутации - изменения структуры хромосом, хромосомные перестройки. [10]
Хромосомные мутации приводят к изменению функционирования генов и имеют значение в эволюции вида.
Мутагены эндогенные
Молекулы ДНК часто претерпевают invivo тепловую депуринизацию, которая может быть спонтанным внутренним источником измененных нуклеотидов. Другим источником эндогенных мутаций служит самопроизвольное дезаминированиецитозинав составе ДНК с образованием урацила. 5-Метилцитозин - одно из модифицированных оснований ДНК, представляет собой "горячую точку" возникновения мутаций путем спонтанного дезаминирования, так как в результате удаления его аминогруппы образуется нормальное основание T, не распознаваемое системами репарации как мутантное. [10]
Свободные радикалы, образующиеся в организме, могут быть причиной спонтанных мутаций. В частности, частота повреждений нуклеотидов ДНК, появляющихся под действием свободных радикалов кислорода, приближается к частоте мутаций, возникающих при депуринизации ДНК. В клетках свободные радикалы кислорода возникают в реакциях восстановления, в результате которых появляются чрезвычайно реакционноспособные промежуточные соединения.
Наибольшую опасность для ДНК представляют радикалы гидроксила, супероксид и синглетный кислород, которые образуются в процессе дыхания, фагоцитоза и при повреждении клеток. Путем измерения содержания в моче человека 8-гидроксидезоксигуанозина и тимингликоля - основных модифицированных нуклеозидов и оснований, образующихся под действием радикалов кислорода, было установлено, что ежедневно в каждой клетке человека возникает около 10000 модифицированных нуклеотидов, мутагенный эффект которых доказан. [10]
Другим источником эндогенных мутагенов является метаболизм микрофлоры, обитающей в кишечнике, желудке и ротовой полости человека. Некоторые промежуточные соединения, возникающие при метаболизме аминокислот, желчных кислот и холестерина под действием бактерий организма человека и обладающие мутагенной и канцерогенной активностью. Промоторами называют вещества, не имеющие канцерогенной активности, но ускоряющие процесс канцерогенеза под действием химических веществ - истинных канцерогенов.
Мутагены экзогенные