Химические концепции в естественнонаучной картине мира
«Концепции современного естествознания»
2014/2015 учебный год
Лекция 10
Химические концепции в естественнонаучной картине мира
10.1. Возникновение химии как науки
Химия, как известно, изучает превращения веществ. В древности химией называли искусство получать золото, серебро или их сплавы. В те времена науки химии в современном понимании еще не было, а весь громадный практический опыт в области получения веществ и материалов накапливался человечеством методом проб и ошибок. И дело, конечно, не ограничивалось добычей драгоценных металлов и их сплавов. Люди уже тогда широко использовали железо, свинец, олово, медь. Целые исторические эпохи, например бронзовый век, теперь связывают с металлургическими технологиями. Значительное развитие получили гончарное ремесло, изготовление изделий из стекла, методы окраски, приготовление лекарственных снадобий и многое другое, что сейчас тесно связано с практической химией. Знания эти передавались по традиции из поколения в поколение кастами жрецов.
Уже в Древней Греции люди пытались отвечать не только на вопрос, как получить то или иное вещество или материал, но и почему происходит превращение веществ и изменение их свойств. Однако вплоть до XVII в. на эти вопросы давались столь абстрактные, умозрительные ответы, что ни о каких действительно научных представлениях, которые могли стать надежной путеводной звездой в практической деятельности, не могло быть и речи. Достаточно вспомнить в связи с этим о первичных элементах и свойствах материи (земля, вода, воздух, огонь, сухость, влажность, тепло, холод и т. п.), лежащих в основе древнегреческой философии. Даже атомистика греков на самом деле не имела ничего общего с атомно-молекулярной теорией, которая только к началу XIX в. завоевала признание и стала фундаментом классической естественнонаучной картины мира.
Особого внимания заслуживает алхимический период в истории становления химии как естественной науки, продолжавшийся свыше тысячи лет. Начиная с IV в. н. э. алхимики безуспешно пытались решить три главные задачи: найти философский камень, отыскать эликсир долголетия и создать универсальный растворитель. Среди алхимических методов было много мистицизма и схоластики. Вот как сами алхимики в XIII в. определяли свое занятие: «Алхимия весьма необходимая, божественная часть тайной небесной натуральной философии, составляющая и образующая единую, не всем известную науку и искусство, которые учат чистить и очищать потерявшие ценность драгоценные камни и придавать присущие им свойства, восстанавливать немощные и больные человеческие тела и приводить их в должное состояние и в наилучшее здоровье и даже превращать все металлы в настоящее серебро, а затем и в настоящее золото посредством единого всеобщего медикамента, к которому сводятся или были сведены все частные лекарства». В то же время именно алхимики, открывшие невероятное количество процессов, наблюдавшие огромное число реакций между самыми различными веществами, заложили экспериментальную базу будущей науки химии.К XVI в. алхимия утрачивает то значение, которое она имела в предшествующие века. Почувствовав тщетность своих усилий, алхимики постепенно переключились на более прагматическую деятельность. Знаменитый врач, алхимик и оккультист Т. Парацельс утверждал, что «настоящая цель химии заключается не в изготовлении золота, а в приготовлении лекарств» (это направление алхимии получило название ятрохимия). Его идея о том, что жизненные явления обладают химической природой и что здоровье зависит от нормального состава органов и «соков», является и сейчас вполне современной.
Первые по-настоящему научные труды в области химии появились в середине XVII в., а первые химики были «по совместительству» физиками. Например, один из основоположников химии Р. Бойль являлся соавтором знаменитого закона о зависимости давления от объема газа при постоянной температуре (закон Бойля-Мариотта). Именно Бойль дал первое научно обоснованное определение химического элемента как предела разложения вещества на составные части.
Типичным для того времени было представление о флогистоне как об особой субстанции, присутствующей в веществах и обусловливающей их горение. Борьба с концепцией флогистона длилась почти сто лет, пока М. В. Ломоносов, а затем А. Лавуазье не доказали, что горение это взаимодействие вещества с кислородом. Примерно в то же время, в конце XVIII в., А. Лавуазье публикует «Начальный учебник химии», который фактически завершил становление химии как науки о составе веществ, об их анализе. В список простых веществ Лавуазье включил все известные неметаллы, металлы, а также «невесомые начала» «свет» и «теплород».
К началу XIX в. понятие химического элемента (по Р. Бойлю) уже прочно вошло в химию. Однако что стоит за этим понятием оставалось загадкой. Отгадать ее «помогло» атомистическое учение Дж. Дальтона о природе химических элементов. Правда, Дальтон игнорировал структуру и форму атомов, считая их маленькими «шариками».
Из всех свойств этих «шариков» он рассматривал только массу. Изучая закономерности соединений различных элементов друг с другом, он пришел к закону кратных отношений: при образовании химических соединений (газов) массы химических элементов относятся как небольшие целые числа. Именно на основании этого закона удалось не только определить химические формулы различных соединений, но и установить относительные массы атомов химических элементов.
Важной вехой на пути «наведения порядка» в химии стал первый Международный химический конгресс, организованный в 1860 г. выдающимся немецким химиком Ф. Кекуле. В следующее десятилетие такой порядок действительно был наведен, и химики начали активный поиск закономерностей в свойствах примерно шестидесяти химических элементов, которые тогда были известны. Этот поиск завершился сенсацией: в 1869 г. Д. И. Менделеев впервые представил научной общественности свою Периодическую таблицу химических элементов. Триумфом Периодической таблицы стало открытие предсказанных Менделеевым новых элементов, о которых в 1869 г. никто не знал.
К началу XX в. таблица Д.И.Менделеева стала «Библией» химии. И в это время пути химиков и физиков пересеклись. Связано это было с тем, что новые физические методы исследования вещества (прежде всего, метод масс-спектроскопии) показали, что существуют химические элементы с одинаковыми свойствами, но с разными массами так называемые изотопы. Стало ясно, что свойства химических элементов определяются не столько атомным весом, сколько каким-то другим параметром атома. Решающий вклад в ответ на этот вопрос был сделан физикой. Сначала возникла планетарная модель атома Резерфорда-Бора (1913), а затем и более строгая квантово-механическая модель (1926).
Сейчас установлено, что химические свойства элементов определяются не массой, а зарядом ядра атома, которое определяет число электронов в атоме, расположенных на разных расстояниях от ядра и, следовательно, обладающих разной энергией связи. Заполнение электронных «оболочек» в ядре осуществляется в соответствии с принципом Паули. Сильнее связанными с ядром оказываются, очевидно, наиболее близкие к ядру электроны, которые не участвуют в химических превращениях. Самые удаленные от ядра электроны, валентные, могут создавать различные типы связей.
10.2. Концептуальные уровни в химии
История развития химии предстает перед нами как процесс последовательного формирования четырех концептуальных уровней.
10.2.1. Первый из них сформировался в середине XVIII в. и может быть назван как учение о составе. На этом уровне содержание химии полностью соответствовало определению Д. И. Менделеева: «химия это наука о химических элементах и их соединениях». Долгое время актуальным в химии являлся вопрос о том, что считать элементарным «кирпичиком» вещества химическим элементом? Как уже было сказано выше, фундаментальный вклад в решение этой проблемы внес Д. И. Менделеев, который в основу систематизации свойств химических элементов положил атомную массу. В дальнейшем, правда, оказалось, что существуют одинаковые по свойствам вещества, которые обладают разной массой (изотопы), поэтому основой классификации элементов стал заряд ядра. Таким образом, химический элемент это вид атомов с одинаковым зарядом ядра, то есть совокупность изотопов.
В 1930-е гг. периодическая система химических элементов заканчивалась ураном U92. В 1950-е гг. ученые получили в руки мощный инструмент синтеза новых трансурановых элементов ускорители частиц. Таким путем были синтезированы элементы до 112 номера включительно, которые, правда, не являются стабильными и быстро распадаются под действием электрических сил отталкивания между протонами. Сейчас уже исследуют свойства 118-го элемента.
Практически все химические элементы в земных условиях существуют в составе тех или иных химических соединений. В настоящее время известно более 8 миллионов соединений, из которых большинство (около 96%) органические (соединения углерода). С современной точки зрения химическое соединение это вещество, атомы которого за счет химических связей объединены в молекулы, комплексы, макромолекулы, монокристаллы или иные квантово-механические системы.
10.2.2. Вторая концептуальная схема может быть названа структурной химией. В XIX в. были открыты изомеры вещества, имеющие одинаковый состав, но разные свойства в зависимости от пространственного расположения химических элементов друг относительно друга. Период становления структурной химии называют «триумфальным маршем органического синтеза».
Основоположником учения о структуре химического соединения считается великий русский химик А. М. Бутлеров, который в 1861 г. создал теорию химического строения, суть которой выражается следующими утверждениями:
- атомы в молекулах соединены между собой в определенном порядке химическими связями согласно их валентности;
- строение вещества выражается структурной формулой, которая для данного вещества является единственной;
- химические и физические свойства вещества определяются качественным и количественным составом молекул, их строением и взаимным влиянием атомов как связанных химическими связями, так непосредственно и не связанными;
- строение молекул можно изучать химическими методами.
Приведем, здесь только один пример, известный с 1861 г. и связанный с именем А. М. Бутлерова. Из четырех атомов углерода и десяти атомов водорода можно получить два вещества: бутан СН3(СН2)2СНз и изобутан (СН3)3СН.
Первый плавится при -138°С и кипит при -0,5°С, растворим в спирте, эфире, воде. Второй плавится при -160°С, кипит при -11,7°С, растворим в спирте и эфире, но плохо растворим в воде.
Однако особенно актуальной теория химических структур оказалась для развития органической химии, а в дальнейшем в биохимии.
В 1870-1890.гг. развитие органической химии привело к получению разнообразных красителей для текстильной промышленности, всевозможных лекарств, искусственного шелка и огромного числа разнообразных материалов. С теории химического строения начался новый этап развития химии, когда она из аналитической науки превратилась в синтетическую.
Теория А. М. Бутлерова и сейчас не утратила своего значения: идея о связи свойств со строением отражает универсальную природную закономерность, которая проявляется не только на химическом уровне организации материи, но и на других, не химических уровнях.
10.2.3. Новый скачок в развитии химии в начале XX в. был связан с созданием третьей концептуальной схемы химии учения о химических процессах.
Что было известно о химических процессах? То, что они обычно сопровождаются выделением (экзотермические реакции) или поглощением (эндотермические реакции) энергии (теплоты). К экзотермическим реакциям относятся, как правило, все реакции соединения (например, 2Н2 + О2 --> 2Н2О), а типичными эндотермическими реакциями являются реакции разложения (например, СаСО3 --> СаО + СО2). Легко понять, почему так происходит. В реакциях соединения молекулы реагентов образуют более устойчивую конфигурацию, более сильно связаны друг с другом. Поэтому их потенциальная энергия Uх понижается по сравнению с тем значением Uo, которое описывает свободные, невзаимодействующие молекулы (часто считают Uo ~ 0). Энергия, соответствующая разности (Uо - Uх), и выделяется в виде тепла. При разложении молекулы на более простые компоненты, наоборот, требуется затратить энергию на разрыв молекулярных связей.
Известно, что одни химические реакции происходят практически мгновенно (например, взаимодействие водорода с кислородом при нагревании или в присутствии платины), а другие идут так медленно, что их трудно даже наблюдать (например, коррозия металлов). С повышением температуры скорость большинства химических превращений существенно возрастает. Согласно правилу Вант-Гоффа при повышении температуры в арифметической прогрессии скорость реакции изменяется в геометрической прогрессии.
Другим фактором, влияющим на скорость протекания реакций, является концентрация реагентов. Основной закон химической кинетики гласит: скорость химических реакций, протекающих в однородной среде, пропорциональна произведению концентраций реагирующих веществ, возведённым в некоторые степени. Объекты химии понимаются теперь как процессы превращения веществ, а не как законченные вещества. Узловым понятием современной химии, наряду с «веществом», «молекулой», становятся организованный молекулярный ансамбль, активированный молекулярный комплекс (составная молекула с малым временем жизни) и т. п.
Однако самым эффективным способом увеличения скорости химических реакций в сотни, тысячи и более раз, является использование катализаторов веществ, которые сами по себе не изменяются во время реакции, но ускоряют ее протекание. Действие катализаторов заключается в том, что они «активируют» молекулы реагентов, как бы возбуждают их, после чего последние легче объединяются, создавая молекулу нового вещества.
Особенно важна роль катализаторов в биохимических реакциях. Катализаторами в этих процессах выступают многочисленные белки, функции которых узкоспециализированы. Без них невозможен синтез сложных высокомолекулярных веществ, осуществляемый в клетках.
Существуют вещества, противоположные по действию катализаторам, это так называемые ингибиторы, иногда значительно замедляющие скорость реакции.
Именно изучением кинетики химических реакций, способов управления их протеканием и занимается химия на третьем концептуальном уровне. Достижения этого уровня позволили существенно повысить эффективность управления химическими процессами, в частности органическим синтезом. Мировое производство таких материалов, как синтетический каучук, пластмассы, искусственное волокно, моющие средства, этиловый спирт стало базироваться на нефтяном сырье, а производство азотных удобрений на использовании азота воздуха.
10.2.4. В последние десятилетия наметился переход к наиболее сложному, четвертому концептуальному уровню химической науки эволюционной химии. Рассмотрение химической формы материи в развитии как ступени закономерного процесса эволюции материального мира в целом позволит выйти на новый уровень и в сфере химической технологии. Этот уровень связан прежде всего с реализацией идеи крупнейших ученых прошлого возможностью копирования, воспроизведения сложных химических процессов происходящих в живых организмах (самоорганизация химических систем, ферментативный катализ и т. п.).
Действительно, подавляющее большинство химических реакций, реализованных руками человека, относится к «неорганизованным» реакциям, в которых частицы (молекулы, ионы, атомы, радикалы) реагируют при случайных встречах (во времени и в пространстве). В то же время «природная» химия является высокоорганизованной, то есть почти все химические превращения осуществляются в системах с молекулярным и надмолекулярным порядком. Целые каскады биохимических реакций организованы в пространстве и во времени. Именно благодаря такой высокой степени организации селективность и производительность биохимических реакций происходит на уровне, пока недостижимом в обычной химии. С позиций эволюционной химии ученые смогут решить как проблему биогенеза, так и освоить каталитический опыт живой природы.
10.3 На переднем крае химии
Что же представляет собой сейчас передний край химии? Главной задачей химии, по-прежнему, является разработка методов синтеза и создание новых веществ, препаратов и материалов. Число химически созданных соединений неуклонно растет. Молекулярная архитектура вновь синтезированных соединений бесконечно разнообразна и фантастически богата. Получены молекулы-ромбоиды (составляющие структуру одномерных металлов), протонные «губки» и «трубки» (молекулярно-организованные протононесущие резервуары и каналы), молекулярные тороиды, крауны (способные разделять катионы и анионы), гипервалентные радикалы, высокоспиновые молекулы (имеющие десятки неспаренных электронов в одной структуре), многопалубные полиароматические молекулы и т. д.
Крупным событием в химии стало освоение принципов звездообразного синтеза, при котором реагенты соединяются по фрактальному типу в гигантскую молекулу дендример. Природа использовала этот принцип при формировании гликогена, амилопектина и некоторых других полисахаридов и белков. Прогнозируется, что полимерные дендримеры будут служить молекулярно-энергетическими антеннами, собирающими энергию солнечного излучения и преобразующими ее в фототок.
Настоящим сокровищем для химии стали фуллерены, с которыми связывают самые смелые и радужные прогнозы. Фуллерен это молекула, состоящая из 60, 70 и более атомов углерода, связанных друг с другом так, что вся структура напоминает футбольный мяч (рис. 1). Оказывается, что и «чистые» фуллерены, и эндофуллерены (с внедренными в молекулу различными атомами и ионами) являются очень перспективными для микроэлектроники и для использования в составе сверхпроводников.
Рис.1 Фуллерен. Атомы углерода расположены в узлах решетки.
Крупным событием в современной химии стал синтез цилиндрических углеродных нанотрубок (диаметром около 10 нм), которые построены по тому же принципу, что и фуллерены. Эти трубки характеризуются высокой растворимостью водорода, что позволяет использовать их в химических источниках тока. Такие нанотрубки можно укладывать, изгибать, резать, выпрямлять, организуя молекулярные электронные устройства.
Большой интерес к себе вызывает синтетическая химия на поверхности, которая исследует сверхтонкие объекты, мономолекулярные слои, мембраны, межфазные границы, адсорбционные слои реагентов на твердых телах, а также нанокластеры. Именно благодаря этим исследованиям появилось большое разнообразие источников света всех возможных цветов.
Новое «лицо» химии это когерентная химия. Когерентность в химии проявляется в синхронизации реакции во времени, которая выражается в периодическом изменении скорости реакции и детектируется как осцилляции в выходе продуктов, эмиссии люминесценции, электрохимического тока и т. д. Когерентность в химии вносит в нее такие понятия, как волновой пакет, фаза, интерференция, бифуркация, фазовая турбулентность. В когерентной химии случайное, статистическое поведение молекул заменяется организованным, упорядоченным и синхронным: хаос становится порядком.
Первые наблюдения осциллирующих режимов химических реакций стали уже достоянием истории. Тогда осцилляции воспринимались скорее как экзотика, а не как химическая закономерность. Сегодня реакция БелоусоваЖаботинского, осцилляции рН и электрохимического потенциала в гетерогенных системах типа вода-масло, волновое горение и прочие стали уже классикой.
Реакция БелоусоваЖаботинского класс химических реакций, протекающих в колебательном режиме, при котором некоторые параметры реакции (цвет, концентрация компонентов, температура и др.) изменяются периодически, образуя сложную пространственно-временную структуру реакционной среды.В настоящее время под этим названием объединяется целый класс родственных химических систем, близких по механизму, но различающихся используемыми катализаторами (Ce3+, Mn2+ и комплексы Fe2+, Ru2+), органическими восстановителями (малоновая кислота, броммалоновая кислота, лимонная кислота, яблочная кислота и др.) и окислителями (броматы, иодаты и др.). При определенных условиях эти системы могут демонстрировать очень сложные формы поведения от регулярных периодических до хаотических колебаний и являются важным объектом исследования универсальных закономерностей нелинейных систем.
Рис.2 Некоторые конфигурации, возникающие при реакции Белоусова Жаботинского в тонком слое в чашке Петри
Однако осознание того, что макроскопическая когерентность является фундаментальным свойством, пришло лишь недавно. Это связано с двумя обстоятельствами. Во-первых, в когерентных режимах можно ожидать увеличения выходов реакции, селективности процессов, самоочистки поверхностей от каталитических ядов и т. п. Во-вторых, интерес к химическим осцилляторам проявился вновь благодаря биохимическим осциллирующим процессам в нервных клетках, мышцах, митохондриях. Считается, что система химических осцилляторов является прообразом будущих моделей нейронных сетей.
Современная химия, раздвигая свои горизонты, активно вторгается в области, которые для «классической» химии не представляли интереса или были недостижимы. Особенно впечатляющие результаты достигнуты в области фемтохимии, которая развивается благодаря прогрессу в получении ультракоротких (10-14 - 10-15с) лазерных импульсов. Эти импульсы позволяют эффективно воздействовать на отдельные атомы и молекулы вещества, обеспечивая высочайшее пространственно-временное разрешение в управлении химическими превращениями. Мощные лазерные импульсы великолепное средство генерации коротких ударных волн, стимулирующих экзотические химические превращения (например, синтез металлического водорода). Другим направлением создания экзотических условий является лазерное охлаждение до сверхнизких температур (10-4 - 10-6К), с помощью которого, например, удалось получить новое состояние вещества кристаллический газ.
PAGE \* MERGEFORMAT 1
Химические концепции в естественнонаучной картине мира